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Abstract

Recently using a Madelung fluid description a connection between envelope-like solutions of
NLS-type equations and soliton-like solutions of KdV-typeequations was found and inves-
tigated by R. Fedele et al. (2002). A similar discussion is given for the class of derivative
NLS-type equations. For a motion with stationary profile current velocity the fluid density
satisfies generalized stationary Gardner equation, and solitary wave solutions are found. For
the completely integrable cases these are compared with existing solutions in literature.

1 Introduction

Eighty years ago Madelung [1] gave a hydrodynamic description of quantum mechanics. Writing
the wave function asΨ =

√ρe
i
h̄θ the Schrödinger equation (1-D case)

ih̄
∂Ψ
∂ t

= − h̄2

2m
∂ 2Ψ
∂x2 +mU(x)Ψ

is equivalent with the pair of coupled equations

∂ρ
∂ t

+
∂
∂x

(ρv) = 0 (1.1)

(

∂
∂ t

+v
∂
∂x

)

v =
h̄2

2m2

∂
∂x

(

1√ρ
∂ 2√ρ

∂x2

)

− ∂U
∂x

(1.2)

whereρ = |Ψ|2 is the fluid density andv = 1
m

∂θ
∂x is its current velocity. The first is a continuity

equation for the fluid density and the second an Euler equation (equation of motion) for the fluid
velocity. The last one contains a force term proportional tothe gradient of the ”quantum potential”,
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h̄2

2m2
∂
∂x

1√ρ
∂ 2√ρ

∂x2 , also known as Bohm’s potential. The interpretation ofv as a fluid velocity comes
from the previous expression of the continuity equation andfrom the expression taken by the
current densityj in this representation

j =
h̄

2m

(

Ψ∗ ∂Ψ
∂x

−Ψ
∂Ψ∗

∂x

)

= ρv

The Madelung fluid description of quantum mechanics proved to be an useful approach in a num-
ber of applications ranging from stochastic mechanics to quantum cosmology (for a historical
review see [2]). In the last decade it was succesfully applied to describe quantum effects in meso-
scopic systems, in plasma physics and for discussing quantum aspects of beam dynamics in high
intensity accelerators (for many references see [3]).

Recently in a series of papers Fedele et al [4] have used a Madelung fluid description to discuss
the following generalized 1-D nonlinear Schrödinger equation (gNLS)

iα
∂Ψ
∂ t

+
α2

2
∂ 2

∂x2 −U(|Ψ|2)Ψ = 0 (1.3)

HereU(|Ψ|2) depends only on|Ψ|2. ForU = |Ψ|2 (1.3) transformed into the usual NLS equation.
Writing Ψ =

√ρe
i
α θ , the densityρ and the current velocityv = ∂θ/∂x are satisfying the same

equations (1.1) and (1.2) respectively, withh̄ replaced byα . By a series of transformations [4] the
equation (1.2) is transformed into

−ρ
∂v
∂ t

+v
∂ρ
∂ t

+2

[

c0(t)−
∫ ∂v

∂ t
dx

]

∂ρ
∂x

−
(

ρ
dU
dρ

+2U

)

∂ρ
∂x

+
α2

4
∂ 3ρ
∂x3 = 0 (1.4)

wherec0(t) is an integration constant (it may depend ont). In the case of a motion with a stationary
profile current velocity, when bothρ(x, t),v(x, t) are depending only onξ = x−u0t, the equation
(1.1) is integrating giving

v(ξ ) = u0 +
A0

ρ(ξ )
(1.5)

with A0 an integration constant, (for instance, solutions vanishing at infinity require thatA0 ≡ 0),
and the equation (1.4) transforms into

α2

4
d3ρ
dξ 3 −

(

ρ
dU
dρ

+2U

)

dρ
dξ

+[2c0 +u2
0]

dρ
dξ

= 0 (1.6)

which is a generalized stationary KdV equation. Several solitary wave solutions were obtained
and discussed in [4] assumingU(ρ) = q0ρν (bright, dark and gray solitons). Once a non-negative
solution of (1.6) is known the phaseθ(x, t) is given by

θ(x, t) = u0ξ +A0

∫

dξ
ρ(ξ )

−c0t + θ0 (1.7)

and the corresponding solution of gNLS equation is completely determined.
It deserves to mention also the use of Madelung fluid description in discussing another com-

pletely integrable NLS-type equation, the so called ”resonant nonlinear Schrödinger equation”.
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This has been introduced to study low dimensional gravity models, and appears also in plasma
physics (see [5] and the references therein).

In the present paper the same procedure will be used to discuss the class of derivative nonlinear
Schrödinger type equations. Two distinct types of such equations will be considered, namely

iα
∂Ψ
∂ t

+
α2

2
∂ 2Ψ
∂x2 + iβ

∂
∂x

(U(|Ψ|2)Ψ) = 0 (1.8)

called in the followings generalized derivative NLS equation of first kind (gdNLS-1), and

iα
∂Ψ
∂ t

+
α2

2
∂ 2Ψ
∂x2 + iβU(|Ψ|2)∂Ψ

∂x
= 0 (1.9)

which will be called generalized derivative NLS equation ofsecond kind (gdNLS-2). ForU =
|Ψ|2 they become completely integrable equations (denoted by dNLS-1 and dNLS-2 respectively),
namely

iα
∂Ψ
∂ t

+
α2

2
∂ 2Ψ
∂x2 + iβ

∂
∂x

(|Ψ|2Ψ) = 0 (1.10)

and

iα
∂Ψ
∂ t

+
α2

2
∂ 2Ψ
∂x2 + iβ |Ψ|2 ∂Ψ

∂x
= 0 (1.11)

Especially the dNLS-1 equation is well known in plasma physics. It describes the evolution of
small but finite amplitude Alphén waves propagating quasiparallel to a magnetic field in a low
β -plasma [6]. Recently the same equation was found to describe the behaviour of large-amplitude
magnetohydrodynamic waves, propagating in an arbitrary direction with respect to the magnetic
field, in a highβ -plasma [7]. Also in nonlinear optics for propagating of very short pulses the
typical Kerr nonlinearity has to be supplemented with a derivative term [8].

The dNLS-1 equation (1.10) is a completely integrable system and was solved by IST method
by Kaup and Newell [9] for vanishing boundary conditions andby Kawata and Inoue [10] for
nonvanishing condition [11]. Alternative methods can be used to find N-soliton solutions of dNLS
equations. We mention Hirota’s bilinear formalism [12], Darboux transformation technique [13],
or the approach of Bäcklund transformations [14]. Periodic solutions of NLS-type equations are
carefully investigated by Kamchatnov [15].

In the next section the basic equations describing the gdNLSequations (1.8) and (1.9) in
Madelung’s fluid description will be derived. In section 3, the solitary solutions vanishing at
infinity will be calculated in the case ofU = ρν , with ν > 0. In the particular case of completely
integrable equation dNLS-1 (1.10) a comparison with the known solutions will be done. In sec-
tion 4, periodic solutions of dNLS-1 and dNLS-2 will be determined using this approach. Finally,
remarks and conclusions are given in section 5.

2 Basic equations

In the Madelung fluid representation we writeΨ =
√ρe

i
α θ . Introducing it in equation (1.8) and

(1.9) and separating the real and the imaginary part, one obtains the continuity equations

∂ρ
∂ t

+
∂
∂x

(ρv+
β
α

G(ρ)) = 0 (2.1)
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for the fluid densityρ and the equation of motion for the fluid velocityv = ∂θ
∂x

(

∂
∂ t

+v
∂
∂x

)

v =
α2

2
∂
∂x

(

1√ρ
∂ 2√ρ

∂x2

)

− β
α

∂
∂x

(vU(ρ)) (2.2)

In (2.1)G(ρ) is defined by

dG
dρ

= U +2ρ
dU
dρ

(2.3)

and

dG
dρ

= U (2.4)

for gdNLS-1 and gdNLS-2 respectively. The equation (2.2) isthe same for both cases. Following
Fedele et al [4] the equation (2.2) is transformed into

−ρ
∂v
∂ t

+v
∂ρ
∂ t

+2

[

c0(t)−
∫ ∂v

∂ t
dx

]

∂ρ
∂x

+
α2

4
∂ 3ρ
∂x3 − β

α
ρU

∂v
∂x

+
β
α

v

(

−U ±ρ
dU
dρ

)

∂ρ
∂x

= 0

(2.5)

with (+) sign for gdNLS-1 and (-) for gdNLS-2 respectively. The equations (2.1) and (2.5) are the
basic equation for the subsequent discussion.

A first remark showing the difference between the gdNLS and gNLS cases is the following.
For gNLS equations a class of solutions (bright, dark solitons) is obtained assuming a constant
velocityv= v0 [4]. Then from the continuity equation (1.1) one obtains that the densityρ depends
only on the variableξ = x−v0t. Here, for the gdNLS, the same assumption should give, by using
Eq. (2.1),

∂ρ
∂ t

+

(

v0 +
β
α

dG
dρ

)

∂ρ
∂x

= 0 (2.6)

which is a dispersionless nonlinear equation whose (implicit) solution is given by

ρ(x, t) = f [x− (v0 +
β
α

dG
dρ

)t] (2.7)

where f (x) is just the initial conditionf (x) = ρ(x, t = 0). This result and the equation (2.6) are
incompatible with the dispersive equation (2.5). Therefore a solution with constant velocity is not
possible in the case of dNLS-type equations.

3 Stationary profile current velocity

The next choice is a stationary profile current velocity whenboth ρ(x, t) andv(x, t) depend only
on ξ = x−u0t. Then (2.1) can be integrated giving

v = u0 +
A0

ρ
− β

α
G(ρ)

ρ
(3.1)
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HereA0 is an integration constant. In this section we consider onlythe caseU(ρ) = ρν . From
(2.3) and (2.4) we obtain

G(ρ) =
2ν +1
ν +1

ρν+1 (3.2)

for gdNLS-1, and

G(ρ) =
1

ν +1
ρν+1 (3.3)

for gdNLS-2. Note that for localized solutions satisfying the boundary conditions

lim
ξ→±∞

ρ(ξ ) = 0

the following conditions for (3.1) are required:

A0 = 0 and ν > 0.

For gdNLS-1 the partial differential equation (2.5) becomes the ordinary differential equation

α2

4
d3ρ
dξ 3 +(2c0 +u2

0)
dρ
dξ

−u0
β
α

(ν +2)ρν dρ
dξ

+(
β
α

)2 2ν +1
ν +1

ρ2ν dρ
dξ

= 0 (3.4)

Integrating twice withρ , dρ
dξ and d2ρ

dξ 2 vanishing at|ξ | → ∞ one obtains

α2

4

(

dρ
dξ

)2

= −ρ2

[

(

β
α

)2 1
(ν +1)2ρ2ν −2u0

β
α

1
ν +1

ρν +(u2
0 +2c0)

]

(3.5)

With the change of variablez= 1
ρν it becomes

α2

4ν2

(

dz
dξ

)2

= −(u2
0 +2c0)z

2 +2u0
β
α

1
ν +1

z−
(

β
α

)2 1
(ν +1)2 (3.6)

Let us assume first that

u2
0 +2c0 = −b2 < 0 (3.7)

Then the second order polynomial in the r.h.s. of (3.6) has two real roots, one positive(z2) and the
other negative(z1). Also the r.h.s. has to be positive, and because in the asymptotic regionρ → 0
and consequentlyz→ ∞, the region of interest on z-axis isz∈ (z2,∞). Denoting

A =
2ν
|α |b (3.8)

the equation (3.6) writes

dz
dξ

= A
√

(z−z1)(z−z2) (3.9)
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Its solution is

z(ξ ) = zm+zM coshAξ (3.10)

where

zm =
z1 +z2

2
=

1
b

|β
α |

ν +1
(−u0 sign

β
α

)

zM =
z2−z1

2
=

1
b

|β
α |

ν +1

√

u2
0 +b2 (3.11)

Then

ρ(ξ ) =
1

(zm+zM coshAξ )
1
ν

(3.12)

If u2
0 +2c0 > 0 the second order polynomial in the rhs of (3.6) has complex conjugated roots, and

the polynomial is negative everywhere, so this situation isof no interest. It is easily shown that
the same equation (3.5) is obtained also in the case of gdNLS-2 equation, although the starting
equation (the equivalent of (3.4)) is slightly different.

In the caseν = 1 when gdNLS-1 becomes the completely integrable equation dNLS-1, the
equation (3.4) becomes

α2

4
d3ρ
dξ 3 +(u2

0 +2c0)
dρ
dξ

−3u0
β
α

ρ
dρ
dξ

+
3
2

(

β
α

)2

ρ2dρ
dξ

= 0 (3.13)

which is the stationary Gardner’s equation. The solution is

ρ =
1

zm+zM coshAξ
(3.14)

with A, zm, zM obtained from (3.8) and (3.11) forν = 1.

In order to calculate the phaseθ(x, t) the expression (3.12) ofρ(ξ ) is introduced in (3.1). We
get

v =
dθ
dξ

= u0−
β
α

2ν +1
ν +1

1
zm+zM coshAξ

(3.15)

which is easily integrated giving

θ(x, t) = u0ξ − β
α

2ν +1
ν +1

1
AzM

1

2
√

1−a2
arctan

[

√

1−a
1+a

tan
A
2

ξ

]

−2c0t −θ0 (3.16)

Here we denoted

a =
zm

zM
=

−u0 signβ
α

√

u2
0 +b2

, |a| = u0
√

u2
0 +b2

< 1 (3.17)

andθ0 is an initial phase (integration constant).
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The results for dNLS-type equation (ν = 1) are similar with those existing in the literature [6],
[9], [12]. We remind here the result for the 1-soliton solution obtained by Kaup and Newell using
IST method for dNLS-1 equation

i
∂q
∂T

+
∂ 2q
∂X2 + i

∂
∂X

(

|q|2q
)

= 0 (3.18)

namely

q(X,T) = 4∆sin γ
e−2iσ(X,T)e2θ (X,T)

e4θ (X,T) +e−iγ e−2iµ+(X,T)

where

θ(X,T) = η(X−X0)−4ξ ηT, σ(X,T) = ξ X +2(ξ 2−η2)T + σ0

eiµ+(X,T) =
e4θ +eiγ

e4θ +e−iγ

Hereζ = ξ + iη is the eigenvalue of the spectral problem and∆, γ are defined by

ξ = −∆2cosγ , η = ∆2sinγ

It is easily seen that

|q|2 =
8∆2 sin2γ

cosγ +cosh4θ
(3.19)

is exactly of the form (3.14). The same expression is also found by other authors (see [6], [13],
[14])

4 Periodic solutions of dNLS-1

Besides the solitons, another interesting solutions of completely integrable equations are the pe-
riodic ones. The problem of finding periodic solutions is known for a long time in mathematical
literature. Different methods than in the soliton case haveto be used (most used is the ”finite
band method”; for a review see [16]), but many times the expressions obtained are rather com-
plicated. Therefore several simplifications were developed to solve the problem in a simpler way.
Such an approach was adopted by Kamchatnov and simple expressions for periodic solutions were
found for a number of important equations, inclusive the dNLS-1 (see [15], [17] and references
therein). Very similar expressions will be found here for dNLS-1 equation using Madelung’s fluid
description presented in the previous section.

The starting point is Gardner’s equation.

α2

4
d3ρ
dξ 3 +(u2

0 +2c0 +
β
α

A0)
dρ
dξ

−3u0
β
α

ρ
dρ
dξ

+
3
2

(

β
α

)2

ρ2dρ
dξ

= 0 (4.1)

with A0 6= 0. After twice integrations one obtains

(

dρ
dξ

)2

= −
(

β
α

)2

P4(ρ) (4.2)
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whereP4(ρ) is a fourth order polynomial inρ

P4(ρ) = ρ4−4
β
α

u0ρ3+4
β
α

(u2
0 +2c0 +

β
α

A0)ρ2 +Bρ +C (4.3)

With B,C other integration constants. We are interested in positivevalues ofρ for which the rhs
of (4.2) is positive also. Keeping this in mind we require that the polynomialP4(ρ) has at least
two positive roots. Let us denote byρ1 > ρ2 > ρ3 > ρ4 the roots ofP4(ρ) and at least the first two
are positive. We list below the interesting situations.

In the case of four real roots withρ1 > ρ2 > 0 the solutions of (4.2) forρ2 ≤ ρ < ρ1 is given
by

∫ ρ

ρ2

dt
√

(t −ρ4)(t −ρ3)(t −ρ2)(ρ1− t)
=

|β |
α2 ξ (4.4)

When all the roots are positive besides (4.4) another interesting situation forρ4 ≤ ρ < ρ3 is

∫ ρ

ρ4

dt
√

(t −ρ4)(ρ3− t)(ρ2− t)(t −ρ1)
=

|β |
α2 ξ (4.5)

It is possible to have two positive real rootsρ1 andρ2 and two complex conjugated. Then

∫ ρ

ρ2

dt
√

(t2 +at+b)(t −ρ2)(ρ1− t)
=

|β |
α2 ξ (4.6)

wheret2 + at + b = 0 has complex rootsc andc∗. We mention also the situation when we have
four real roots, two of them positiveρ1 > ρ2 >, and the other two equalρ3 = ρ4. Then we get

∫ ρ

ρ2

dt

(t −ρ3)
√

(t −ρ2)(ρ1− t)
=

|β |
α2 ξ (4.7)

In the cases (4.4)-(4.6) the integral in the rhs is an elliptic integral and the solutions can be ex-
pressed through Jacobi elliptic functions [18]. Indeed for(4.4) the l.h.s. is given bygF(φ ,k) = gu,
([18], formula 256.00), where

k2 =
(ρ1−ρ2)(ρ3−ρ4)

(ρ1−ρ3)(ρ3−ρ4)
, µ2 =

ρ1−ρ2

ρ1−ρ3
, k2 < µ2 < 1

g =
2

√

(ρ1−ρ3)(ρ2−ρ4)
, u =

1
g
|β |
α2 ξ

sin2 φ = sn2u =
(ρ1−ρ3)(ρ −ρ2)

(ρ1−ρ2)(ρ −ρ3)
(4.8)

from which we get

ρ =
ρ2−ρ3µ2sn2u

1−µ2sn2u
(4.9)

HereF(φ ,k) is the elliptic integral of first kind of modulusk, andsn(u,k) is Jacobi elliptic sinus
of amplitudeu and modulusk. From (4.9) we see thatρ = ρ2 for u = 0 andρ = ρ1 for ρ =
K(k), K(k) being the complete elliptic integral of first kind.
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The integral (4.5) is of the same form, but with other definitions only forµ and sinφ (see [18],
formula 252.00)

sin2 φ = sn2u =
(ρ1−ρ3)(ρ −ρ4)

(ρ3−ρ4)(ρ1−ρ)
, µ2 =

ρ3−ρ4

ρ1−ρ3
(4.10)

Then

ρ =
ρ4 + ρ1µ2sn2u

1−µ2 sn2u
(4.11)

When we have two complex rootsc, c∗ the result is (see [18] formula 259.00)

cosφ = cn u=
(ρ1−ρ)B− (ρ −ρ2)A
(ρ1−ρ)B+(ρ −ρ2)A

(4.12)

where

A2 = (ρ1−b1)
2 +a2

1 B2 = (ρ2−b1)
2 +a2

1

a2
1 = −1

4
(c−c∗)2 b1 =

1
2
(c+c∗)

g =
1√
AB

(4.13)

k2 =
(ρ1−ρ2)

2− (A−B)2

4AB
u =

√
AB

|β |
α2 ξ

From (4.12) one obtains

ρ =
Aρ2+Bρ1+(Aρ2−Bρ1)cn u

(A+B)+ (A−B)cn u
(4.14)

andρ = ρ2 for u= 0 andρ = ρ1 for u= 2K(k). In the case of (4.7) the result is a rather complicate
expression with trigonometric functions which we shall notpresent here.

In order to calculate the phaseθ(x, t) we start from

v =
dθ
dξ

= u0 +
A
ρ
− 3

2
β
α

ρ (4.15)

For ρ given by (4.11) one obtains

θ(x, t) = (u0+
A0

ρ3
− 3

2
β
α

ρ3)ξ − ρ2−ρ3

ρ3
A0

∫

dξ
ρ2−ρ3µ2sn2u

− 3
2

β
α

(ρ2−ρ3)

∫

dξ
1−µ2sn2u

−θ0

As dξ = gα2

|β |du, and using the integral ([18], formula 363.02)

∫

du
1−ηsn u

=
u
2

+
1

2(1−η)
arctan

[

(1−η)
sn u

cn u dn u

]

(4.16)

whereη = ρ3
ρ µ2 in the first integral andη = µ2 in the second (in both casesη < 1) finally we

obtain

θ(x, t) =

[

u0 +
A0

2

(

1
ρ2

+
1
ρ3

)

− 3
4

β
α

(ρ2−ρ3)

]

ξ −θ0
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− A0

2ρ3

α2

|β |g
(

1− ρ3

ρ2

)

arctan

[(

1− ρ3

ρ2
µ2

)

sn u
cn u dn u

]

(4.17)

−3
4
|α |sign

β
α

(ρ2−ρ3)g
1

1−µ2 arctan
[

(1−µ2)
sn u

cn u dn u

]

As is easily seen the functionφ(u) = (1−η) sn u
cn u dn u is a periodic function of period 2K, vanishing

at u = 0 andu = 2K and becomming±∞ at u = K. Therefore as is expected arctanφ(u) ∈ (0,π)
whenu∈ (0,2K) andθ(x, t) is well behaved. In the same way the phaseθ(x, t) can be calculated
for other expressions ofρ(ξ ).

5 Remarks and Conclusions

In the present paper the solitary wave solutions for a class of generalized derivative nonlinear
Schrödinger equations (gdNLS eqs.) were investigated in Madelung’s fluid description. Explicit
solutions for vanishing boundary conditions at infinity were obtained for stationary profile current
velocity. For arbitrary space and time dependence ofρ(x, t) and v(x, t), when these functions
satisfy the coupled set of nonlinear equations (2.1) and (2.5), the problem is still open. In the
case of the derivative NLS-1 equation (1.10), using this formalism, the 1-periodic solutions were
determined. As expected they are expressible through Jacobi elliptic functions and very similar
with those existing in literature. Extension to other gdNLSequations are under way. They are not
straightforward because in the rhs of equation (4.2) a higher order polynomial inρ should appear
and the integration leads to hyperelliptic functions. Remarkably, conclusion is that Madelung’s
fluid description is an useful approach to find special classes of solutions of nonlinear evolution
equations.
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