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Abstract

Sine-Gordon (SG) models with position dependent mass or with isolated defects appear in
many physical situations, ranging from fluxon or semi-fluxonin nonuniform Josephson junc-
tion to spin-waves in quantum spin chain with variable coupling or DNA solitons in the active
promoter region. However such phenomena usually break the integrability of the model, al-
lowing only numerical or perturbative result. We investigate two types of inhomogeneous
sine-Gordon (SG) models: one with a variable mass and the other with a defect at the center
and show integrability of both these models, in classical aswell as in exact quantum level.
The variable mass SG exhibits accelerating and shape changing exact solitons and can de-
scribe realistic problems at certain limits, while the defect SG possesses a rich class of exact
solutions with creation or annihilation of solitons by the defect point. Based on our result
theories for exact semi-fluxion solution in 0−π-Josephson junction is proposed.

1 Introduction

Sine-Gordon (SG) model is an important nonlinear integrable field model, which along with its
theoretical richness has a wide range of applications in different fields [1, 2, 3, 4, 5, 6, 7, 8, 9].
Apart from possessing all fascinating properties of classical integrable systems the SG model ex-
hibits special properties, like relativistic invariance,integer-valued topological charge represented
by solutions like kink, antikink, breather etc. [10] and most importanly the ultralocality leading to
classicalr-matrix formulation and the quantum integrability. Quantum integrability is guaranteed
by the quantum Yang-Baxter equation (QYBE), which for the SGmodel yields the well known
quantumsuq(2) algebra [11, 12].

In realistic sytems however the SG model usually appears notin its pure form, but with inhomo-
geneities or defect, which spoil the most cherishable property of the model, e.g. the integrability.
For example SG models with variable mass (VMSG)m = m(x) appears in fluxon dynamics in
Josephson junction with impurity [6], in DNA-soliton dynamics due to nonuniformity induced by
specific base sequences in the promoter region [4], in spin wave propagation with variable interac-
tion strength [5] etc. Semifluxons seem to arise in long JJ governed by the SG with defect, where
the -ve half of the solutionu is described by the standard SG, while in the +ve half the solution
suffers aπ-jump: u + π [2]. However in all such inhomogeneous SG models with variable mass

Copyright c© 2008 by A Kundu



238 A Kundu

or defects, due to loss of integrability the solutions can beextracted only numerically or at best
perturbatively [4, 6, 7, 5].

Therefore it is a challenge to build SG models with variable mass or with defects, preserving
their classical and quantum integrability, and at the same time describing closely the realistic
situations using their exact analytic result. We focus in the subsequent sections on two such
inhomogeneous SG models: i) with space-time dependent variable massm(x, t) (VMSG) [13] and
ii) with a defect at the center (DSG) [14], which have the above desirable properties.

2 Variable mass Sine-Gordon model

Solitons in the constant mass SG model, as in all integrable systems, move with constant velocity
and shape. In real systems however due to nonuniformity of the media, soliton velocity, shape
and amplitude might change with space-time, and a static soliton may start moving and even turn
back [6, 7, 4]. This can be used also as desirable effects for fast transport, fast communication, or
for a possible soliton gun [8]. However such results due to nonintegrable nature of realistic mod-
els could be achieved mostly numerically or perturbatively. We however construct an integrable
VMSG model with exact solutions, which nevertheless exhibit shape changing and accelerating
solitons.

2.1 VMSG model through Lax pair

Since our strategy is to respect integrability, we start from the linear spectral problemΦx(x,λ ) =
U(λ ,x)Φ(x,λ ), Φt(x,λ ) = V (λ ,x)Φ(x,λ ), for the SG model with its Lax pair [15]

U =
i
4

(

−utσ3 + mk1cos
u
2

σ2−mk0sin
u
2

σ1
)

, (2.1)

V =
i
4

(

−uxσ3−mk0cos
u
2

σ2+ mk1sin
u
2

σ1
)

, (2.2)

wherek0 = 2λ + 1
2λ , k1 = 2λ − 1

2λ .
Note that the Lax pair contain two parameters:mass m andspectral parameter λ , which are

linked to soliton width (shape) and its velocity, respectively. When they are constant, the compat-
ibility Φxt = Φtx, or equivalently the flatness conditionUt −Vx +[U,V ] = 0 , yields the integrable
SG equation. However makingm or λ variable, breaks in general the integrability of the system.
Interestingly we observe that, the integrability can be restored, when both these parameters vary
simultaneously following the constraint:(mk0)t +(mk1)x = 0, (mk1)t +(mk0)x = 0, which yields
the VMSG equation

utt −uxx + m2(x, t)sinu = 0. (2.3)

Note that the contraint can be simplified toκt +ρx = 0, κx +ρt = 0 whereκ = lnm, ρ = lnλ and
reduced to two free field equations

κtt −κxx = 0, ρtt −ρxx = 0. (2.4)

Remarkably, the set of equations (2.3-2.4) represents a newintegrable relativistic system gener-
alizing the SG model and is a reduction of the conformal affineToda model (CATM), at the free
field limit of the spectral dilatation fieldρ [16].
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However, since our aim here is to apply VMSG to realistic models with given inhomogeneity,
instead of dealing with the integrable system (2.3-2.4) in its general form, we restrict to particular
solutions for variable mass and spectral parameter:

m(x, t) = m0 f+ f−,λ = λ0
f−
f+

(2.5)

compatible with the integrable VMSG (2.3). Heref± are arbitrary smooth functions ofx± = x± t,
respectively. Due to explicit space-time dependent coefficient (2.5), the VMSG equation (2.3) is
no longer relativistic or translational invariant. Demandof such invariance simply gives back the
SG model with massm = const. [17]. There also exists a nonlinear coordinate transformation:
(x, t) → (X ,T ), which can map VMSG with variable mass to SG model with a constant mass and
takes particularly simple form in the light-cone coordinates [17, 16]:X± =

∫

dx± f 2
±. Physically

this means is to go to a noninertial frame of reference, whichhowever may change the domain
or make it unphysical, singularities may also arise or the boundary conditions might change. For
investigating real systems with inhomogeneity inducing accelerated and shape changing solitons,
which is our main focus here, one should however analyze the VMSG model in its original form.
Similar situation arises in the study of accelerated solitons in plasma governed by the integrable
inhomogeneous NLS equation and also in inhomogeneous Toda chain, Ablowitz -Ladik model
etc. with nonisospectral flow [18, 19].

2.2 Soliton solutions and classical integrability

For extracting the exact solution for our VMSG model, we can apply Hirota’s bilinearization as
well as the inverse scattering (IS) method, the former beinga direct method for soliton solu-
tion, while the later is an indirect method capable of givingmore general solution. For soliton
solution of the SG equation Hirota’s solution may be expressed asu = −2i ln g+

g− , whereg± are
conjugate functions with expansion in plane-wave type solutions. For the VMSG model (2.3)
the same ansatz seems to work, only the plane waves should be replaced by their general-
ized form: g(n) = cn

λn
e

i
2(X(λn,x,t)−T (λn,x,t)), where X(λn,x, t) =

∫ x dx′m(x′, t)k1n(x′, t), T (λn,x, t) =
∫ t dt ′m(x, t ′)k0n(x, t ′) . This gives the soliton solutions through the expansion:

g± = 1±g(1), for 1- kink . g± = 1± (g(1) + g(2))+ s(
(θ1−θ2)

2
)g(1)g(2), for 2-kink

etc. with the scattering matrixs(θ) = tanh2θ . λ2 = −λ ∗
1 = ηeiθ , gives the kink-antikink bound

state or the breather solution.
Similarly we can apply the IS formalism to the inhomogeneousSG model, for which the crucial

step is to analyse and use the analytic properties of the JostfunctionΦ. Here again the asymptotic
plane waves should be replaced by their generalized form. Therefore, going parallel to the standard
SG one can get for the VMSG model the exact N-soliton solution(for r(λ ) = 0) with discrete
spectrumλn n = 1,2, . . .N (zeros ofa(λ )). N = 1-soliton (kink) solution withλ1 = iη , takes the
explicit form

u = 4tan−1(eζ ), ζ =
i
2
(X(iη ,x, t)−T (iη ,x, t)), (2.6)

with the corresponding localized soliton sinu
2 = 1

cosh(ζ ) , , which we draw in Fig. 1. The variable

soliton velocity is given byvs(x, t) = − dx
dt = k1(η ,x.t)

k0(η ,x.t) .
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For this integrable VMSG apart from the Lax pair and the exactN-soliton solusions we can find
also the set of all higher conserved quantities and prove theclassical integrability more explicitly
by showing that it satisfies classical YBE with the samer-matrix of the SG model [20].

2.3 Quantum integrability

We explore the quantum integrability of our VMSG model following the algebraic Bethe ansatz
(ABA) method for the constant mass SG case [11], since at the quantum level direct mapping
from VMSG to SG becomes difficult. Quantum SG lattice Lax matrix-operatorU j(λ ,Sj,m), j =
1,2, . . . ,L involves quantum spin operatorsS3

j(u j),S
±
j (u j, p j,m) expressed in canonical operators

u j, p j = u̇ j and mass parameterm, which should be considered now as site dependent:m j. We
find fortunately, that the quantumR(λ

µ )-matrix associated with the QYBE

R(
λ
µ

)U j(λ )⊗U j(µ) = U j(µ)⊗U j(λ )R(
λ
µ

), j = 1,2, ...,n (2.7)

for the SG model remains unchanged for its inhomogeneous extension, since thisR-matrix de-
pends only on the ratio of two spectral parameters,λ(x,t)

µ(x,t) , in which x, t-dependence (2.5) enters
only multiplicatively and hence cancels out. Moreover, QYBE being a local algebra (at each lat-
tice site j) is not affected by inhomogeneity and yields the same quantum algebrasuq(2), replacing

only m by a site-dependentm j in its structure constant:[S+
j ,S−k ] = δ jkm j

sinα2S3
j

sinα .

The aim of the ABA is to solve exactly the eigenvalue problem of trT (λ ) = ∑nĈnλ n, with
T = ∏L

j U j, generating all higher conserved operatorsĈn including the Hamiltonian, with the
eigenstates given as|N >= |λ1, . . . ,λN >= ∏N

a B(λa)|0 >. T12 = B(λ ) acts ascreation operator,
while T21 = C(λ ) asdestruction operator annihilating the pseudovaccum:C(λ )|0 >= 0. A crucial
step in the formalism is to construct this pseudovaccum state |0 >, which we achieve by combin-
ing the actions of the consequitive pair of Lax operators:U jU j+1|0 >, as proposed in [11], but

generalizing the procedure for site-dependent massm j. Thus we solve for|0 >= ∏L
j |Ω

(2)
j >

through local pseudovaccum asΩ(2)
j = (1+ δ 2gm1m2(q1,q2)) fm1m2(q1,q2), whereg and f are

generalizations: fm1m2 = (
m

q2α
2

m
q1α
1

) fm, gm1m2 =
m2

2
m gm, over their known solutionfm,gm for con-

stant m [11]. Consequently the vacuum eigenvalues for the VMSG model are generalized as
A(λ )|0 >= α(m)|0 >, D(λ )|0 >= β(m)|0 >, whereα(m) = ∏ j a(θ ,

m j

m j+1
), β(m) = ∏ j a∗(θ ,

m j+1

m j
)

with a(θ ,
m j

m j+1
) = (

m j

m j+1
+ δ 2m jm j+1(cosh(2θ + iα))). We get finally the exact eigenvalue for the

conserved quantities:trT (λ ) as Λ(λ ;λ1, . . . ,λN) = α(m) ∏N
a f (λa

λ )+β(m) ∏N
a f ( λ

λa
), where f (λ

µ )

is expressed through the elements of the quantumR(λ
µ )-matrix for the SG model, which remains

unchanged. The Bethe equations for determining the parameters{λa} are generalized similarly.

2.4 Application to physical problems

Since our main focus is to make explicit contact with physical models, we concentrate on the shape
and velocity changing soliton solution of VMSG for concreteintegrable cases as shown in Fig. 1
a-d).

i) Notice that variable massm = m0(x2−t2)n remains invariant under relativistic motion and for
n = 1, yields from (2.6) the exact soliton solutionu = 4tan−1(eζ ),ζ = m

3 (2η(x− t)3+ 1
2η (x+ t)3).
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The corresponding localized soliton drawn in Fig. 1a, clearly shows the intriguing change in
soliton shape and width. Position-dependent mass in this case is achieved att → 0 and therefore
for a short time evolution limit the above analytic solutioncan describe the fluxon propagation
through Josephson junction with local impurity likem0x2, as shown in Fig. 1b.

ii) Another case of physical significancem =
√

2m0cosα q(x±t), with α as arbitrary parameter
gives (with α = 1 and +ve sign ) the exact kink solutionu = 4tan−1(eζ ), ζ = m0(k0x− k1t +

1
4qη sin2q(x+ t)), k0,1 = 2η ±1/(2η) with soliton variable velocityvs = m0d(k1− 1

2η cos2q(x+

t)) and widthd = (m0(k0 + 1
2η cos2q(x + t)))−1 oscillating periodically in space-time, as shown

in Fig. 1c. Note that this is a particularly interesting casedescribing SG equation parametrically
driven by a plane wave [21].

iii) Another similar integrable case is with massm = m0(2cosq(x + t)cosq(x− t))
α
2 , which

at short time interval limit (t → 0) gives≈ m(x) = m̃0(cosqx)α , while for evolution limited to a
small space interval (x → 0): ≈ m(t) = m̃0(cosqt)α . Both these limits are of significant physical
relevance, since a spin chain with variable coupling constant may be described by a VMSG with
massm(x) = m0(cosqx)α , whereα = 1

2−K , with K ≥ 1
2 being an important parameter of the system

[5]. Similarly a real oscillator chain model pumped by an alternating current [22] can be linked to
a VMSG with massm(t) = (cosqt)

1
2 . Therefore we may conclude that the exact soliton solutions

of our VMSG model can describe analytically important physical models at certain limits, and
alternatively realistic spin (or oscillator) models can betuned to the integrable VMSG model by
making its coupling strength oscillate periodically also in time (or space).

Since in physical situations the inhomogeneity of the mediainduces mostly position-dependent
massm(x), we explore this case and conclude from our result (2.5) that, the VMSG with space-
dependent variable mass can be integrable only form(x) = meρ (x−x0) with ρ = const. This also
explains why most of the realistic VMSG equations with a different position-dependent mass (see
e.g. [5]) turn out to be nonintegrable. Exact kink solution for this integrable case is obtained from
(2.6) as

u = 4tan−1(e±ζ ), ζ =
1
ρ

k0(t)m(x), m(x) = exp(ρ(x−x0)), k0(t) = cosh(θ −ρ(t− t0)). (2.8)

The corresponding variable soliton velocity and width arevs = tanh(θ − ρ(t − t0)), and d =
1

m(x)k0(t)
, showing how the shape of the soliton changes and how it accelerates, decelerates or

exhibits boomeron [23] like property. This scenario is close to the predicted behavior of solitons
in the dynamically active promoter zone of the T7A1 DNA [4].

Another remarkable fact to notice is that, the position-dependent mass can change the boundary
condition of the SG field and therefore can control the crucial topological chargeQ of the kink
solution. Recall that unlike fluxons in JJ, which can be described by the analytic kink solution of
SG with Q = 1, the semifluxons withQ = 1

2, has no known analytic description [2]. Using our
result (2.8) we may conclude that, forρ > 0, sincem(∞) = ∞, m(−∞) = 0, the kink solution would
yield u(∞) = 2π, u(−∞) = π , corresponding to the topological chargeQ = 1

2π (u(∞)−u(−∞)) =
1
2. This fact might serve as an analytic theory based on VMSG forthe semi-fluxon, observed in
experiments [24]. We shall propose another possible formulation of exact semi-fluxon solution
based on integrable DSG model studied in the next section.

At ρ → 0: ζ = 1
ρ k0(t)m(x) → ζ0 = m(k0(x− x0)− k1(t − t0)) and the standard SG soliton with

m = const,vs = const. is recovered. Therefore we can acess the solitonic behaviorin realistic
models for any mass deviation from its constant value, by approximating through expansion inρ
with high orders of accuracy. Fig. 1d shows that a static soliton in a region with constant mass
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remains static, while an initially static soliton placed ina zone with variable mass can move with
accelerated (or decelerated) motion, simulating the solitons in the DNA chain, where static DNA
solitons in the inactive regions ( with constant mass due to almost uniform background of two
types of base pairs) remain static, while similar initiallystatic solitons in active promoter region
with variable mass (due to significant difference in the number of lighter (A-T) and heavier (G-C)
base pairs) can acquire rich accelerated motion [4].
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Figure 1: Exact soliton solutions:s = sin u
2(x, t) for the integrable VMSG equation with variable

mass m. a)m = m0(x2− t2) having an intriguing flattening of the soliton at the center.b) Short
time interval limit of the above soliton, showing the flattening prominently. c)m = 2m0cosq(x+t)
with oscillating behavior of the soliton. d) Static solitonin the zone (x ≤ 1.2) with m = const and
initially static soliton in the zone (atx = 4.8) with variable mass:m = m0exp(ρx) ≈ m(1+ ρx),
with ρ = 0.1 moves backward with acceleration, resembling soliton propagation in inactive/active
promoter region in a DNA chain.
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3 SG model with defect

We focus now on our second project [14] of integrable sine-Gordon model with a defect (DSG) at
a single pointx = 0, described by

u±tt −u±xx + m2
0sinu± = 0, for u+ = u(x ≥ 0, t), u− = u(x ≤ 0, t)). (3.1)

This model at classical and semi-classical level was investigated from the abstract theoretical point
of view [25] and the conserved quantities were found in a general framework [26]. On the other
hand some forms of DSG are in use for describing an important physical situation, e.g. semi-
fluxon in a long Josephson junction [24], which appears due tocertain discontinuity point in such
superconducting systems. However DSG models considered inthis context for describing semi-
fluxons are all nonintegrable systems allowing only approximate numerical solutions [2].

We construct here DSG model (3.1), show its integrability both in the classical and in exact
quantum level, find systematically all higher conserved quantities including explicitl expressions
for the defect Hamiltonian and momentum. As an important application we propose an analytic
descriptrion of semi-fluxons within the framework of our integrable DSG.

3.1 Bridging relation and conserved quantities

Based on the result of [27] on semi-line SG our crucial observation [14] is that the functions
u−(x,0) (and u−t (x,0)) can be smoothly extended fromx ≤ 0 onto the whole line by means of
bridging relation (similarly u+(x,0) from x ≥ 0 onto the whole line) given by the Bäcklund trans-
formation (BT):

u+
x = u−t + p+ q, u+

t = u−x + p−q, p = asin
u+ + u−

2
, q = a−1sin

u+ −u−

2
(3.2)

with parametera regulating the defect intensity. Therefore our concept differs conceptually from
that of [25], where BT (3.2) for the DSG model was considered to be frozen only at the defect
point. In our model the physical observable fields are nevertheless onlyu+ along the +ve andu−

along the -ve semiaxis.
Interestingly, BT (3.2) can be represented as agauge transformation relating two Lax pairs of

the DSG:

USG(u+) = F0USG(u−)(F0)−1+F0
x (F0)−1, V SG(u+) = F0V SG(u−)(F0)−1+F0

t (F0)−1 (3.3)

whereF0(ξ ,u+,u−) is the Bäcklund matrix

F0(ξ ,u+,u−) = e−i α
4 σ3u−M(λ ,a)ei α

4 σ3u+
, M(λ ,a) =

(

λ a
−a λ

)

, (3.4)

involving both fieldsu± and bridging between them (including the defect pointx = 0).

3.2 Conserved quantities of the DSG

For Standard SG the infinite set of conserved quantities can be obtained from the generating func-
tion loga(λ ) = ∑Cnλ n, Cn =

∫ +∞
−∞ ρn(u)dx, wherea(λ ) + a∗(λ ) = Tr(T (λ )). For integrable

DSG, the commuting set of conserved quantities is similarlygiven by

Cd
n =

∫ 0

−∞
ρn(u

−)dx+ Dn +

∫ +∞

0
ρn(u

+)dx (3.5)
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with a crucial additional contributionDn, n = 1,2, ... due to the defect pointx = 0 in each of the
conserved quantitiesCn. We intend to find these additional contributions systematically, following
the faddeev-Takhtajan construction [20] coupled with the BT (3.3).

The infinite set of integrals of motion for the SG model as detailed in [20] may be given by (for
n ≥ 2)

Cn = i
∫ +∞

−∞
(wn+1(x)− e−iu(x)wn−1(x))dx, (3.6)

C1 = −1
4

∫ +∞

−∞
(
1
2
(ut(x)+ ux(x))

2 +1−cosu(x))dx (3.7)

wherewn are determined from the Riccati type equation obtained fromthe linear system of SG
(2.2) as

wn+1(x) = −2iw
′
n(x)−θ(x)wn(x)+

i
2

Σn
k=1wk(x)wn+1−k(x)

− i
2

Σn−1
k=0wk(x)e

iu(x)wn−1−k(x)−
i
2

eiuδn,1, (3.8)

with w0 = i andθ(x) = ut + ux.
To derive the asymptotic expansion forλ → 0 it suffices to use the involution(λ ,π,u) →

(−λ−1,π,−u), with π = ut , which leaves the Lax pair invariant. As a result one getsC−n(π,u) =
(−1)nCn(π,−u), n = 1,2, .... In particular for the momentumP and the HamiltonianH we have
P = −1

2(C−1+C1) andH = 1
2(C−1−C1). For extending this procedure to the DSG model, we use

(3.3) to obtain a crucial bridging relation between monodromy matrices across the defect point
x = 0 as T (0+,y,λ ) = 1

λ−ia F0(λ )T (0−,y,λ ), y 6= 0 . Incorporating this relation in the above
procedure of [20], we can derive systematically allDn [14] as

D1 = 2acos
(u+(0)+ u−(0))

2
, D2 = w1(0−)D1 + iaD1−

1
2

D2
1, (3.9)

etc., wherew1(0−) is solution of Riccati equation (3.8):w1(x) = −iα(u−t (x)+ u−x (x)). For de-
riving D−n as defect contribution in conserved quantitiesC−n we use again the above mentioned
symmetry to getD−n(π−,u−,π+,u+,a) = Dn(π−,−u−,−π+,u+,−1

a) and hence obatinD−1 =

−2
a cos(u+(0)−u−(0))

2 , and similarly allD−n,n ≥ 2 etc. using the result for higherDn, already found,
the details of which will be given separately [14].

As a result we obtain the Hamiltonian (energy) for the DSG model as

H(de f ) =
∫ 0

−∞
H(u−)dx+

∫ ∞

0
H(u+)dx+ Hd(0) (3.10)

whereH(u) = 1
2(u2

x +u2
t )+m2

0(1−cosu) is the standard SG energy-density, while extra contribu-
tions from defect atx = 0 is

Hd(0) = −(2acos
u+(0)+ u−(0)

2
+2a−1cos

u+(0)−u−(0)

2
), (3.11)

and the momentum as

P(de f ) =

∫ 0

−∞
P(u−)dx+

∫ ∞

0
P(u+)dx+ Pd(0), (3.12)
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whereP(u) = uxut is the standard SG result, while

Pd(0) = −2acos
u+(0)+ u−(0)

2
+2a−1cos

u+(0)−u−(0)

2
. (3.13)

is the defect contribution.
Note that inspite of additional terms in the Hamiltonian at the defect pointx = 0 the equations

for u± at this point still give the same SG equation. This can be shown by carefully considering
the extra terms, which come from the integral part and cancelthe additional defect contribution.

3.3 Classical and Quantum integrability of DSG through Yang-Baxter equation

A semiclassical treatment through factorizable S-matrix has been given in [25] for the DSG model.
We present here the exact quantum integrable extension of this model following closely the ap-
proach of standard quantum SG model [11], also detailed in the previous section. For this we
construct first an exact lattice regularized version of our quantum DSG model with a discrete
monodromy matrix

T N
−N(λ ) = T N+(λ )Fd

0 (λ ,u+
0 ,u−0 )T N−(λ ) (3.14)

where

T N+(λ ) = U+
N (λ ,u+

N ) · · ·U+
1 (λ ,u+

1 ), T N−(λ ) = U−
−1(λ ,u−−1) · · ·U−

−N(λ ,u−−N) (3.15)

with U±
j (λ ,u±j ), j = ±1, . . .±N being the discrete quantum Lax operator of the lattice SG model

defined along both sides of the defect, whileFd
0 (λ ,u+

0 ,u−0 ) is the Lax operator at the defect point
j = 0. Since for quantum integrability each of the Lax operatorsinvolved in (3.14) must satisfy
the QYBE with trigonometricRtrig-matrix, each of them should be a particular realization of the
ancestor model defined in [28]:

Ltrig
anc(λ ) =

(

λ ĉ(+)
1 eiαs3

+ λ−1ĉ(−)
1 e−iαs3

2sinαs(−)
q

2sinαs(+)
q λ ĉ(+)

2 e−iαs3
+ λ−1ĉ(−)

2 eiαs3

)

, (3.16)

with the quantum spin operators generating a generalized quantum algebra

[s(+)
q ,s(−)

q ] =
(

M̂(+) sin(2αs3)− iM̂(−) cos(2αs3)
) 1

sinα
, (3.17)

[s3,s(±)
q ] = ±s(±)

q , [M̂(±), ·] = 0. (3.18)

Here the deforming operatorŝM(±) = 1
2(ĉ(+)

1 ĉ(−)
2 ± ĉ(−)

1 ĉ(+)
2 ) are expressed through ˆc(±)

a , a = 1,2,
which are mutually commuting and central. The superscripts(±) here are ovbiously different
from ± lebeling the fields along± ve semiaxis in the DSG model.

U±
j in (3.15)) should be the exact lattice Lax operator of the SG model, whileFd

0 a similar
lattice version of the SG Bäcklund matrix (3.4) and both of them must be derivable from the
ancestor model (3.16). Note that a reduction at ˆc(±)

a = ∓i∆,a = 1,2, takes (3.18) tosuq(2) and
the related generators represented in canonical variables[u±j , p±k ] = iδ jk, to

s3 =
u±

2
, s(+)

q = e−ip±g(u±,∆), s(−)
q = (s(+)

q )†, (3.19)
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where

g(u,∆) =

(

1+2∆2cosα(u+
1
2
)

)
1
2 1

sinα
. (3.20)

recover from (3.16) the known quantum Lax operatorUSG
j for the lattice SG model [11].

Now for constructing the dicrete BT operatorFd
0 similarly from (3.16), we choose ˆc(+)

a =

1, ĉ(−)
a = 0, a = 1,2, givingM̂(±) = 0. This reduces (3.18) to an algebra[s(+)

q ,s(−)
q ] = 0, [s3,s(±)

q ] =

±s(±)
q , with a consistent realization in the form

eiαs3
= e−, s(+)

q = (s(−)
q )† = ae+ P−1

− , where e± = ei α
4 (u+

0 ±u−0 ),P− = ei2(p+
0 −p−0 ) (3.21)

with commutation realations[e+,P−] = 0, e−P− = e−iα P−e−. (3.16) therefore reduces finally to
the explicit solution

Fd
0 (λ ) = P

1
2σ3

− F0(λ )P
− 1

2σ3

− (3.22)

Note that both the above discrete Lax operators obtained as realizations of the quantum integrable
(3.16) by construction must satisfy QYBE exactly withRtrig-matrix. Consequently, (3.14) with
(3.15) represent a quantum integrable discrete DSG model.

At the classical limit whenR→ r the QYBE reduces to classical YBE (CYBE){U j(λ ),⊗U j(µ)}PB =
δ jk[r(λ ,µ),U j(λ ),⊗Uk(µ)]. We can deriectly check that both the discrete Lax operators (3.22)
and exact latticeUSG

j satisfiy CYBE exactly, proving the classical integrabilityof the DSG explic-
itly.

Following the formulation of quantum SG model [11] we can apply the Algebraic Bethe ansatz
method to the lattice regularized quantum DSG constructed above and solve in principle its eigen-
value problem exactly. For constructing the crucial pseudovaccum|0 >±= ∏±

j=±1N|Ω j >, we
observe that the approach should be the same as in the standard SG model, at all sites except the
defect point, yieldingC±(λ )|0 >±= 0 along the±-semiaxis. However the defect point would
play a nontrivial role, since after crossing this point, sayfrom the left the pseudovaccum property
gets lost due to nontriangular matrix form ofFd

0 |Ω0 >. Instead of annihilating the local vaccum
|Ω0 >, the defect atj = 0 would turn it to a stateO|Ω0 > at the lower left corner of the matrix
Fd

0 |Ω0 >, where operatorO =−aei(2(p+
0 −p−0 )+ α

4 (u−0 +u+
0 )), and creating at the same time its conjugate

state−O†|Ω0 > at the upper right corner. This is expected to lead to the creation/annihilation of
quantum states by the defect point similar to that with classical solitons as we will observe below.
This tricky point however needs careful and separate analysis and should be dealt with elsewhere.

It is crucial to check that the discrete DSG we constructed and solved above should yield the
same DSG field model we are investigating here, at the continuum limit with lattice const.∆ → 0.
Note that at this limit the canonical variables go to canonical fields: u±j → u±(x), p±j → ∆p±(x),
with [u±(x), p±(y)] = iδ (x − y). Therefore for extracting the limit we have to scalep±j giving

eip±j ≈ 1+ i∆p±(x). It is easy to check that this would yield from the Lax operator of the lattice
SG model:σ1USG±

j → (1+ ∆USG±(x)) + O(∆2) the corresponding field Lax operatorUSG±(x)
given by (2.2).

Concentrating on the defect pointj = 0 at the same limit, we get the expansion :

Fd
0 (λ ,u+

0 ,u−0 ) → F0(λ ,u+(0),u−(0))+ ∆F1(λ ,u+(0),u−(0)) (3.23)
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which clearly yields onlyF0 at ∆ → 0, i.e. recovers the same BT matrix (3.4) at the continuum
limit, which was our essential requirement. Therefore collecting all nontrivial terms we get finally
the continuum limit of (3.14)

T (λ ) =
(

e
∫ +∞

0 USG+(λ ,x′)dx′
)

F0(λ ,u+(0),u−(0))
(

e
∫ 0
−∞ USG−(λ ,x′)dx′

)

(3.24)

yielding our original DSG field model we are investigating.

3.4 Changing solitons in DSG and possible semifluxon formation

The connection betweenU± given by BT (3.3) suggests that the corresponding Jost solutions,
which in turn yields the soliton solutions through inverse scattering method, are linked by the
BT matrix (3.4), i.e. by a multiplicative polynomial of firstorder in the spectral parameterλ .
This concludes intriguingly that the role of the defect is tocreate or annihilate a soliton! That is
u− = const. (’vacuum’) solution would create due to (3.2) a 1-kink solution for u+ or similarly
u− as 1-kink propagating through the defect point may be annihilated to a vacuum or transformed
into 2-kink, given byu+. Even richer solutions can occur in the DSG generalizing this situation
, i.e. u− propagating asN-kink after passing through the defect point atx = 0 may turn into a
N + 1-kink (through creation of soliton) or into aN − 1-kink (through annihilation of soliton),
described by the solutionu+. We would like to clarify that though theu± fields can be prolonged
formally to each others domain, the physically observable fields areu− in the domainx < 0 and
u+ in the semiaxisx > 0, while at the defect point both of them are present linked bythe BT (3.2).
Two such possible scenario are shown in Fig. 2 a-b). A pertinent question arises here regarding
the obvious violation of topological charge in this SG modelwith a defect. One should note
however that the topological charge arises in the SG model asa degree of mapping fromS1 → S1,
while the coordinate-axis with a defect or a discontinuity point (like a puncture in the sphere) can
not be mapped into a smooth sphere orS1, violating thus the concept of the topological charge
itself. Therefore in DSG the soitons seem to be no loger topological and hence their number may
change. This is also the reason why we can describe in this framework semi-fluxons, as shown
below, which are nontopoogical entries. The possibility ofcreation/annihilation of solitons in DSG
has also been indicated in [25] through their analysis of soliton scattering processes. Our analysis
of this problem depending on the boundary conditions of the fieldsu± at space infinities will be
detailed elsewhere [14].

Experimental detection of semifluxons in early days [29] hasreached now high level of so-
phistication, where FM and AFM arrays of semifluxons are observed in recent clean experiements
[24]. However unlike fluxons exact analytic theory of semi-fluxons seems to be not available yet.
A standard theoretical approach is to take the critical current asIs = Ic sinu, in the -ve half axis in
a SG model, whileIs = Ic sin(u + π) in the +ve half with aπ-jump of its field, suffered after the
discontinuty or defect point atx = 0, Another approach is to consider instead a damped driven SG
equation with additional terms like :u±tt −u±xx + m2

0sinu± = γ + αθxx + β u̇, which are activated at
the discontinuty pointx = 0 [2]. However these appoaches are numerical and approximate, since
both the related defect SG models as described above are nonintegrable with no analytic solution.

Using the crucial BT betweenu± fields and the intriguingcreation/annihilation of solitons by
the defect point in our integrable DSG model together with a control of the soliton phase shift,
we can formulate a possible exact theory of the semifluxon dynamics allowing analytic solutions.
The creation of semifluxon arrays can be explained similarlyby extending our construction to
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Figure 2: Soliton a) creation (from 1 to 2-kink) and b) annihilation (2 to 1-kink) at the defect point
x = 0 in the integrable defect SG

integrable muti-defect SG. Experimental semifluxons may bedescribed by the SG model with
a defect atx = 0, in the interval−L ≤ x ≤ +L, whereL may be considered to be large for a
long Josepson junction. We takeL → ∞ to get our integrable DSG model, for creating an exact
solution with a 0−π jump we consider a constant soutionu+ = π, alongx ≥ 0. Note that simply
u− = 0 is not a consistent solution, which should be constructed now from Backlund image (3.2)
yielding the equationu−x = k0(a)cosu−

2 ,k0(a) = (a + a−1). Integrating this equation we get

the exact kink-solutionu− = 4tan−1( eψ−1
eψ +1), whereψ = k0(a)

2 (x + x0). It is crucial to note that
x0 comes as an arbitrary integration constant, for any value ofwhich u− is an exact solution of
above BT equation. For semi-fluxon solution we shall consider the influence ofx0 as the effective
intervention through the discontinuity point and choosex0 = L. This yieldsψ(x = −L) = 0 and
consequentlyu−(x = −L) = 4tan−1(0) = 0. Since for our model we should takeL → ∞, we
getu−(−∞) = 0,u−(0) = 4tan−1(1) = π, and as constant solution alsou+(+∞) = π. This gives
clearly the topological charge of the solution on the whole axis asQ = 1

2π (u+(∞)− u−(∞)) = 1
2,

describing a 0−π transition of the field and hence a semifluxon!
Note that hereu−x (−L) = k0(a) = const., L → ∞ and 6= 0 as in usual SG model, which however

is not required here since we use only BT for generating our exact soliton solution. Hamiltonian
density may be shifted by a const. to make the energy finite.

4 Concluding Remarks

We have investigated inhomogeneous SG models with variablemass and variable soliton velocity
(VMSG) and with a defect at a point (DSG). We have shown that integrability can be preserved
for both these models at the classical and at the exact quantum level with the construction of exact
soliton solutions exhibiting unusual changing properties. In the VMSG model the exact solitons
can change velocity, shape, width and amplitude, simulating under certain limiting conditions
soliton dynamics in some real systems of physica importance. In the DSG model on the other
hand solitons can change their number during their propagation, by creating or annihilating soli-
tons while moving across the defect point. Physical evidence of this intriguing fact is yet to be
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confirmed in experiments. Based on our result on VMSG and DSG models we propose two dif-
ferent mechanisms for semikink formation, which may be considered as possible exact solutions
of semi-fluxons, observed in recent experiments.
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