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Abstract

Sine-Gordon (SG) models with position dependent mass dr isitlated defects appear in
many physical situations, ranging from fluxon or semi-flukononuniform Josephson junc-
tion to spin-waves in quantum spin chain with variable cougpbr DNA solitons in the active
promoter region. However such phenomena usually breaktbgriability of the model, al-
lowing only numerical or perturbative result. We investegéwvo types of inhomogeneous
sine-Gordon (SG) models: one with a variable mass and ther otith a defect at the center
and show integrability of both these models, in classicaival as in exact quantum level.
The variable mass SG exhibits accelerating and shape ciaegact solitons and can de-
scribe realistic problems at certain limits, while the a¢f8G possesses a rich class of exact
solutions with creation or annihilation of solitons by thefect point. Based on our result
theories for exact semi-fluxion solution in-0rr-Josephson junction is proposed.

1 Introduction

Sine-Gordon (SG) model is an important nonlinear integrdigld model, which along with its
theoretical richness has a wide range of applications ferdifit fields [1, 2, 3, 4, 5, 6, 7, 8, 9].
Apart from possessing all fascinating properties of ctadsntegrable systems the SG model ex-
hibits special properties, like relativistic invarianaggeger-valued topological charge represented
by solutions like kink, antikink, breather etc. [10] and miosportanly the ultralocality leading to
classicalr-matrix formulation and the quantum integrability. Quantintegrability is guaranteed
by the quantum Yang-Baxter equation (QYBE), which for the I8Qdel yields the well known
quantumsug(2) algebra [11, 12].

In realistic sytems however the SG model usually appearsitstpure form, but with inhomo-
geneities or defect, which spoil the most cherishable ptppe the model, e.g. the integrability.
For example SG models with variable mass (VMS®%3) m(x) appears in fluxon dynamics in
Josephson junction with impurity [6], in DNA-soliton dyn&s due to nonuniformity induced by
specific base sequences in the promoter region [4], in spie waopagation with variable interac-
tion strength [5] etc. Semifluxons seem to arise in long J&geed by the SG with defect, where
the -ve half of the solutiom is described by the standard SG, while in the +ve half thetisolu
suffers ar-jump: u+ 7 [2]. However in all such inhomogeneous SG models with végialass
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or defects, due to loss of integrability the solutions carekieacted only numerically or at best
perturbatively [4, 6, 7, 5].

Therefore it is a challenge to build SG models with variabksmor with defects, preserving
their classical and quantum integrability, and at the same tlescribing closely the realistic
situations using their exact analytic result. We focus ia slubsequent sections on two such
inhomogeneous SG models: i) with space-time dependerahblanmassn(x,t) (VMSG) [13] and
i) with a defect at the center (DSG) [14], which have the abdesirable properties.

2 Variable mass Sine-Gordon model

Solitons in the constant mass SG model, as in all integrafsiesms, move with constant velocity

and shape. In real systems however due to nonuniformity eofrikdia, soliton velocity, shape

and amplitude might change with space-time, and a statitosohay start moving and even turn

back [6, 7, 4]. This can be used also as desirable effectafbtfansport, fast communication, or
for a possible soliton gun [8]. However such results due timtegrable nature of realistic mod-

els could be achieved mostly numerically or perturbativéte however construct an integrable
VMSG model with exact solutions, which nevertheless ethibhape changing and accelerating
solitons.

2.1 VMSG model through Lax pair

Since our strategy is to respect integrability, we stamftbe linear spectral problerP,(x,A) =
UA,X)P(X,A), Pt(X,A) =V (A,X)P(x,A), for the SG model with its Lax pair [15]

_ by o3 u o, LU
U_4< wo +mk1coszo mkosmzo), (2.1)

i u . u
V=g (~wo®~ MkoCos5 0%+ mklsmﬁal) : (2.2)

whereko =22 + 55, ki =24 — 5.

Note that the Lax pair contain two parametensass m and spectral parameter A, which are
linked to soliton width (shape) and its velocity, respegliy When they are constant, the compat-
ibility ®y = dyy, or equivalently the flatness conditidtk — Vi + [U,V] = 0, yields the integrable
SG equation. However making or A variable, breaks in general the integrability of the system
Interestingly we observe that, the integrability can bearesl, when both these parameters vary
simultaneously following the constraintmko); + (mky)x = 0, (mky): + (mko)x = 0, which yields
the VMSG equation

Ut — Uy + MP(X,1)sinu= 0. (2.3)

Note that the contraint can be simplifiedkot+ px = 0, kx+ ot = 0 wherek =Inm, p =1InA and
reduced to two free field equations

Kit — Ko = 0, pt — px = 0. (2.4)

Remarkably, the set of equations (2.3-2.4) represents amegrable relativistic system gener-
alizing the SG model and is a reduction of the conformal affioéa model (CATM), at the free
field limit of the spectral dilatation fielg [16].
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However, since our aim here is to apply VMSG to realistic medéth given inhomogeneity,
instead of dealing with the integrable system (2.3-2.4)smgéeneral form, we restrict to particular
solutions for variable mass and spectral parameter:

m(x,t) =mof f_ A = Ao:—_ (2.5)

+

compatible with the integrable VMSG (2.3). Hekrg are arbitrary smooth functions &f = x+t,
respectively. Due to explicit space-time dependent caeffiq2.5), the VMSG equation (2.3) is
no longer relativistic or translational invariant. Demasfdsuch invariance simply gives back the
SG model with massn = cong. [17]. There also exists a nonlinear coordinate transfaonat
(x,t) — (X, T), which can map VMSG with variable mass to SG model with a cansteass and
takes particularly simple form in the light-cone coordesaf17, 16]:X. = [dx. f2. Physically
this means is to go to a noninertial frame of reference, whimlvever may change the domain
or make it unphysical, singularities may also arise or thenblary conditions might change. For
investigating real systems with inhomogeneity inducingederated and shape changing solitons,
which is our main focus here, one should however analyze M&8® model in its original form.
Similar situation arises in the study of accelerated saditm plasma governed by the integrable
inhomogeneous NLS equation and also in inhomogeneous Taala, Ablowitz -Ladik model
etc. with nonisospectral flow [18, 19].

2.2 Soliton solutions and classical integrability

For extracting the exact solution for our VMSG model, we cpplya Hirota’s bilinearization as
well as the inverse scattering (IS) method, the former bairdjrect method for soliton solu-
tion, while the later is an indirect method capable of givingre general solution. For soliton
solution of the SG equation Hirota’s solution may be exprdsasu = —2iln i, whereg® are
conjugate functions with expansion in plane-wave typetgmis. For the VMSG model (2.3)
the same ansatz seems to work, only the plane waves shouldplzEed by their general-
ized form: g = f2e2(X(nX)=T(nX1) where X (An,X,t) = [*dXM(X,t)kin(X 1), T (An, X 1) =
[tdt’'m(x,t")kon(x,t’) . This gives the soliton solutions through the expansion:

(61— 62)
2

etc. with the scattering matrix(0) = tanh?6. A, = —A; = n€?, gives the kink-antikink bound
state or the breather solution.

Similarly we can apply the IS formalism to the inhomogene®Gsmodel, for which the crucial
step is to analyse and use the analytic properties of thdulagion ®. Here again the asymptotic
plane waves should be replaced by their generalized forraceftre, going parallel to the standard
SG one can get for the VMSG model the exact N-soliton soluffonr(A) = 0) with discrete
spectrumA, n=1,2,...N (zeros ofa(A)). N = 1-soliton (kink) solution withA; = in, takes the
explicit form

gt =1+9g%, fori-kink. g¥ =1+ (g +g?)+5( )gPg@ . for 2-kink

u=4tan (ef), { = %(X(in,x,t)—T(in,x,t)), (2.6)

with the corresponding localized soliton $ir= er(z)’ , which we draw in Fig. 1. The variable

_dx _ ki(nxt)

soliton velocity is given bys(x,t) = —G = ko1 XD) "
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For this integrable VMSG apart from the Lax pair and the ekksbliton solusions we can find
also the set of all higher conserved quantities and provel#ssical integrability more explicitly
by showing that it satisfies classical YBE with the sammatrix of the SG model [20].

2.3 Quantum integrability

We explore the quantum integrability of our VMSG model fallag the algebraic Bethe ansatz
(ABA) method for the constant mass SG case [11], since at tiamtgm level direct mapping
from VMSG to SG becomes difficult. Quantum SG lattice Lax ixadperatorU;(A,S;,m), j =
1,2,...,L involves quantum spin operatoﬁ(uj),sji(uj, pj,m) expressed in canonical operators
uj, p; = u; and mass parametert, which should be considered now as site dependent:We

find fortunately, that the quantuR(%)-matrix associated with the QYBE

R<%>uj<A>®uj<u>=uj<u>®uj<A>R<%>, j=12..n 2.7)

for the SG model remains unchanged for its inhomogeneown&rin, since thiR-matrix de-
pends only on the ratio of two spectral parametéﬁ%, in which x,t-dependence (2.5) enters
only multiplicatively and hence cancels out. Moreover, @YBeing a local algebra (at each lat-

tice sitej) is not affected by inhomogeneity and yields the same qmmgebra&Jq(Z), replacing

: - 28}
only mby a site-dependemb; in its structure constant{S, §;] = djkm JS';?:G L

The aim of the ABA is to solve exactly the elgenvalue problenrd(A) = znén)\” with
T= |‘|J Uj, generating all higher conserved operat@rslncludmg the Hamiltonian, with the
eigenstates given dll >= [A1,..., Ay >= 1N B(Aa)|0 >. T2 = B(A) acts agreation operator,
while T,; = C(A) asdestruction operator annihilating the pseudovaccutt? )|0 >= 0. A crucial
step in the formalism is to construct this pseudovaccune fat, which we achieve by combin-
ing the actions of the consequitive pair of Lax operatdig;, 1|0 >, as proposed in [11], but

generalizing the procedure for site-dependent nmass Thus we solve fofl0 >= |‘|jL \QEZ)
through local pseudovaccum é‘éz) = (14 0°Qmumy (a1, 92)) frym, (A1, 92), Whereg and f are

92
- . a - .
generalizations: fmm, = (%7 ) fmy Gmym, = %gm, over their known solutionfy, gy for con-
m"tT

stantm [11]. Consequently1 the vacuum eigenvalues for the VMSG rhade generalized as
* mj
A(A )|0>—a y|0>, D(A)|0>= B |0 >, wherea(y, = [1;a(6 ’m,+1) Bm =ja"(6,72)

) rnJ
with a(6, o 1) =( Til + &2mjmj;1(cosi(26 +ia))). We get finally the exact eigenvalue for the

conserved quantitiesrT(A) as A(A;A1,...,An) = O 18 F(52) +Bm MA F(£), wheref(%)
is expressed through the elements of the quarfﬁ(;ﬁv-matrix for the SG model, which remains
unchanged. The Bethe equations for determining the paeas{ét,} are generalized similarly.

2.4 Application to physical problems

Since our main focus is to make explicit contact with phylsicadels, we concentrate on the shape
and velocity changing soliton solution of VMSG for concrategrable cases as shown in Fig. 1
a-d).

i) Notice that variable mass= my(x? —t?)" remains invariant under relativistic motion and for
n= 1, yields from (2.6) the exact soliton solution= 4tan (&), { = F(2n (x— )3+ 5 (x+1)3).
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The corresponding localized soliton drawn in Fig. 1la, dfeahows the intriguing change in
soliton shape and width. Position-dependent mass in tisis issachieved at— 0 and therefore
for a short time evolution limit the above analytic solutioan describe the fluxon propagation
through Josephson junction with local impurity likgx?, as shown in Fig. 1b.

ii) Another case of physical significanee= /2mycos” q(x=t), with a as arbitrary parameter
gives (witha = 1 and +ve sign ) the exact kink solutian= 4tarr(ef), { = mo(kox — kst +
a7 SIN2)(x+1)), ko1 = 21 +1/(2n) with soliton variable velocitys = mod (ky — 5; c0S Zy(x+
t)) and widthd = (mp(ko + % cos 2y(x+1)))~* oscillating periodically in space-time, as shown
in Fig. 1c. Note that this is a particularly interesting cdsscribing SG equation parametrically
driven by a plane wave [21].

iii) Another similar integrable case is with mass= my(2cos(x+t)cosq(x —t)) %, which
at short time interval limitt(— 0) gives~ m(x) = fMy(cosgx)?, while for evolution limited to a
small space intervalk(— 0): ~ m(t) = fiy(cosat)?. Both these limits are of significant physical
relevance, since a spin chain with variable coupling camisteay be described by a VMSG with
masam(x) = mp(cosgx)?, wherea = ﬁ withK > % being an important parameter of the system
[5]. Similarly a real oscillator chain model pumped by araiating current [22] can be linked to
a VMSG with massn(t) = (cosqt)%. Therefore we may conclude that the exact soliton solutions
of our VMSG model can describe analytically important pbgsimodels at certain limits, and
alternatively realistic spin (or oscillator) models cantbeed to the integrable VMSG model by
making its coupling strength oscillate periodically aladiime (or space).

Since in physical situations the inhomogeneity of the madiaces mostly position-dependent
massm(x), we explore this case and conclude from our result (2.5) thatVMSG with space-
dependent variable mass can be integrable onlyrfos) = me® %) with p = const. This also
explains why most of the realistic VMSG equations with aatfiint position-dependent mass (see
e.g. [5]) turn out to be nonintegrable. Exact kink solutionthis integrable case is obtained from
(2.6) as

u=4tan }(e*), { = %ko(t)m(x), m(X) = exp(p(X—Xo)), Ko(t) =cosh(O@ —p(t—tp)). (2.8)

The corresponding variable soliton velocity and width age= tanh(6 — p(t —tp)), andd =
m, showing how the shape of the soliton changes and how it erextels, decelerates or
exhibits boomeron [23] like property. This scenario is elts the predicted behavior of solitons
in the dynamically active promoter zone of the Ti7BNA [4].

Another remarkable fact to notice is that, the positionashg®ent mass can change the boundary
condition of the SG field and therefore can control the ciucipological chargeQ of the kink
solution. Recall that unlike fluxons in JJ, which can be dbsd by the analytic kink solution of
SG withQ = 1, the semifluxons witlQ = % has no known analytic description [2]. Using our
result (2.8) we may conclude that, for> 0, sincem(e) = 0o, m(—o0) = 0, the kink solution would
yield u(e0) = 271, u(—e0) = 11, corresponding to the topological chaiQe= 5 (u(e) — u(—)) =
%. This fact might serve as an analytic theory based on VMSGHh®rsemi-fluxon, observed in
experiments [24]. We shall propose another possible faation of exact semi-fluxon solution
based on integrable DSG model studied in the next section.

Atp—0:{ = %ko(t)m(x) — (o= m(ko(X—Xo) — ki (t —tp)) and the standard SG soliton with
m = congt,vs = cong. is recovered. Therefore we can acess the solitonic behaviaalistic
models for any mass deviation from its constant value, byagpmating through expansion jn
with high orders of accuracy. Fig. 1d shows that a statid@olin a region with constant mass
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remains static, while an initially static soliton placedaizone with variable mass can move with
accelerated (or decelerated) motion, simulating theswiin the DNA chain, where static DNA
solitons in the inactive regions ( with constant mass dudrtmst uniform background of two
types of base pairs) remain static, while similar initiadhatic solitons in active promoter region
with variable mass (due to significant difference in the nands lighter (A-T) and heavier (G-C)
base pairs) can acquire rich accelerated motion [4].

Figure 1: Exact soliton solutions= sin3(x,t) for the integrable VMSG equation with variable
mass m. ajn= mg(x?> —t?) having an intriguing flattening of the soliton at the cent®). Short
time interval limit of the above soliton, showing the flaitemprominently. cm=2mgycosq(x+t)
with oscillating behavior of the soliton. d) Static solitonthe zone X < 1.2) with m= cong and
initially static soliton in the zone (at= 4.8) with variable massm = mpexp(px) ~ m(1+ px),
with p = 0.1 moves backward with acceleration, resembling solitopggation in inactive/active
promoter region in a DNA chain.
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3 SG model with defect

We focus now on our second project [14] of integrable sined@o model with a defect (DSG) at
a single poinx = 0, described by

Ut — US4+ msinut =0, foru™ =u(x>0,t), u" =u(x<0,t)). (3.1)

This model at classical and semi-classical level was ilyatstd from the abstract theoretical point
of view [25] and the conserved quantities were found in a gdrfeamework [26]. On the other
hand some forms of DSG are in use for describing an importagpsipal situation, e.g. semi-
fluxon in a long Josephson junction [24], which appears dwettain discontinuity point in such
superconducting systems. However DSG models considertiisicontext for describing semi-
fluxons are all nonintegrable systems allowing only apprate numerical solutions [2].

We construct here DSG model (3.1), show its integrabilitthda the classical and in exact
qguantum level, find systematically all higher conservedngjtias including explicitl expressions
for the defect Hamiltonian and momentum. As an importantiegiion we propose an analytic
descriptrion of semi-fluxons within the framework of ouregtable DSG.

3.1 Bridging relation and conserved quantities

Based on the result of [27] on semi-line SG our crucial okstsm [14] is that the functions
u~(x,0) (andy, (x,0)) can be smoothly extended frori< 0 onto the whole line by means of
bridging relation (similarly u*(x,0) from x > 0 onto the whole line) given by the Backlund trans-
formation (BT):

ut+u- 4 ut—u”

, g=a ~sin

U =U +p+d, Y =U +p—g, p=asin 3.2)

with parameter regulating the defect intensity. Therefore our concegedifconceptually from
that of [25], where BT (3.2) for the DSG model was consider@thé frozen only at the defect
point. In our model the physical observable fields are nbedgss onlyu™ along the +ve and™
along the -ve semiaxis.

Interestingly, BT (3.2) can be represented amuage transformation relating two Lax pairs of
the DSG:

USS(ut) = FOUS ) (FO) T+ RA(FO) 7 VE(Uh) = FVE () (F) ™ +R(F) ™ (3.9)

whereF%(&,ut,u™) is the Backlund matrix

FO&,ut,u") = e 59° M(A,a)d 3oV M()\,a):( A_a aA ) (3.4)

involving both fieldsu® and bridging between them (including the defect paiat 0).

3.2 Conserved quantities of the DSG

For Standard SG the infinite set of conserved quantities eabtained from the generating func-
tion loga(A) = YChA", Cy = [ pn(u)dx, wherea(A) +a*(A) = Tr(T(A)). For integrable
DSG, the commuting set of conserved quantities is similgisign by

0 +o0
Cﬁ':/ Pn(u™)dx+ Dp+ A pn(u™)dx (3.5)
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with a crucial additional contributiod,, n=1,2,... due to the defect poirk= 0 in each of the
conserved quantitigs,. We intend to find these additional contributions systecadly, following
the faddeev-Takhtajan construction [20] coupled with tAe(8.3).

The infinite set of integrals of motion for the SG model as ifledan [20] may be given by (for
n>2)

Co=i [ (a9 — e w4 () (3.6)
1+ 1 )
Cl:_Z, » (E(ut(x)+ux(x)) + 1 — cosu(x))dx (3.7)

wherew, are determined from the Riccati type equation obtained frloenlinear system of SG
(2.2) as

Wi 1(X) = 25 ) = B()Wn(X) + S Wi (X)W 1-(X)
—'—ZZE;éwk(X)é“(X)wn_l_k(X) - Iieiuéml’ (3.8)

with wo =i and8(x) = U + Ux.

To derive the asymptotic expansion fadr— 0 it suffices to use the involutiof\, i, u) —
(—A~L, 1, —u), with 1= u, which leaves the Lax pair invariant. As a result one @etg(1T,u) =
(—1)"Cy(mT,—u), n=1,2,.... In particular for the momentur® and the Hamiltoniard we have
P= —%(C_1+C1) andH = %(C_l—Cl). For extending this procedure to the DSG model, we use
(3.3) to obtain a crucial bridging relation between monaodyanatrices across the defect point
x=0as T(0+,y,A) = ﬁFo()\)T(O—,y,A), y # 0 . Incorporating this relation in the above
procedure of [20], we can derive systematically|l[14] as

(U (0)+u(0))

. 1
D; = 2acos , Dy =w;(0—)Dy +iaD; — ED%, (3.9)

etc., wherew; (0—) is solution of Riccati equation (3.8w;(X) = —ia(u (X) + Uy (X)). For de-
riving D_p, as defect contribution in conserved quantifizs, we use again the above mentioned
symmetry to geD_,(mr,u~,m",u,a) = Dn(rr,—u*,—nﬂu*,—%) and hence obatib_; =
—gcosw, and similarly allD_p,n > 2 etc. using the result for high&,, already found,
the details of which will be given separately [14].

As a result we obtain the Hamiltonian (energy) for the DSG ehad

H (def) :/O H(u—)dx+/0°°H(u+)dx+ Ha(0) (3.10)

whereH (u) = %(u)z( + U2) +mg(1—cosu) is the standard SG energy-density, while extra contribu-
tions from defect ak =0 is

Ha(0) = —(ZaCOSM + 2a1cosw), (3.11)

and the momentum as

pl(def) :/O P(u—)dx+/0w P(ut)dx+ Py(0), (3.12)
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whereP(u) = uxL is the standard SG result, while

ut(0)—u (0) '

5 (3.13)

ut(0)+u (0
Py(0) = —2acos# +2a1cos
is the defect contribution.
Note that inspite of additional terms in the Hamiltoniante tefect poink = 0 the equations
for u* at this point still give the same SG equation. This can be shimycarefully considering
the extra terms, which come from the integral part and caheshdditional defect contribution.

3.3 Classical and Quantum integrability of DSG through YangBaxter equation

A semiclassical treatment through factorizable S-maitaIbeen given in [25] for the DSG model.
We present here the exact quantum integrable extensiorisofribdel following closely the ap-

proach of standard quantum SG model [11], also detailedérptievious section. For this we
construct first an exact lattice regularized version of cuardum DSG model with a discrete
monodromy matrix

TNA) =TV ORI, ug,up )TN () (3.14)
where
TN =US A, uf) U (A,u)), TN(A) =U— (A,uy)---Uy(A,uy) (3.15)

with Uji(}\ , uji), j = %1,... =N being the discrete quantum Lax operator of the lattice SGainod
defined along both sides of the defect, WHi(A,uj, Uy ) is the Lax operator at the defect point
j = 0. Since for quantum integrability each of the Lax operatovslved in (3.14) must satisfy
the QYBE with trigonometridR"'9-matrix, each of them should be a particular realizatiorhef t
ancestor model defined in [28]:

, A(+) dasd |y —1a(-) o—ias? iy al)
LIrig()) = )\Cl_ e (J:)\ ¢ A(Gi) . 28'22{)&1 . ). (3.16)
2sinas Ag el 4 A —1e) e
with the quantum spin operators generating a generalizadtqm algebra
() N () e i) 1
ExiEw (M sin(2as?) — iM cos(2as3)) —. (3.17)
€57 =+, M5, ] =0, (3.18)

Here the deforming operatok=) — 1(&{")¢\ ) + & &;") are expressed through™, a=1,2,
which are mutually commuting and central. The supersciigts here are ovbiously different
from =+ lebeling the fields along: ve semiaxis in the DSG model.

Uji in (3.15)) should be the exact lattice Lax operator of the Séaleh while F(g’ a similar
lattice version of the SG Backlund matrix (3.4) and both leérh must be derivable from the
ancestor model (3.16). Note that a reductionc&f) = FiA,a= 1,2, takes (3.18) teuy(2) and
the related generators represented in canonical vari@.l?*lepff] =i0jk, to

+
$=7. %) =ePguta), &) =), (3.19)
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where

1
1\2 1
A) = | 14247 ) 3.20
g(u,A) ( + cosa(u+2)> sng (3.20)
recover from (3.16) the known quantum Lax operajﬁif3 for the lattice SG model [11].

Now for constructing the dicrete BT operatﬁgj similarly from (3.16), we chooseé*”)

1, &) =0, a=1,2, givingM® =0. This reduces (3.18) to an algetsa ), s, /] =0, [} s =
iséi), with a consistent realization in the form

¥ —e s =(sy)) =ae, P, wheree, =& %(b*b) p = g2Ps o) (3.21)

with commutation realationge, ,P_] =0, e P_ = e'“P_e_. (3.16) therefore reduces finally to
the explicit solution

IO = P2  Ro(A)P- 2% (3.22)
Note that both the above discrete Lax operators obtainegldigations of the quantum integrable
(3.16) by construction must satisfy QYBE exactly wRH'9-matrix. Consequently, (3.14) with
(3.15) represent a quantum integrable discrete DSG model.

Atthe classical limit wheiR — r the QYBE reduces to classical YBE (CYBR);(A),®U;(U)}pg =
Ojk[r (A, 1),Uj(A),®Ux(u)]. We can deriectly check that both the discrete Lax operaf22)
and exact latticé) JSG satisfiy CYBE exactly, proving the classical integrabilitithe DSG explic-
itly.

Following the formulation of quantum SG model [11] we canlgppe Algebraic Bethe ansatz
method to the lattice regularized quantum DSG construdiesieaand solve in principle its eigen-
value problem exactly. For constructing the crucial pseadoum|0 >*= |‘|J¢:ﬂN|Qj >, we
observe that the approach should be the same as in the ste€8@anodel, at all sites except the
defect point, yieldingC*(A)|0 >*= 0 along the+-semiaxis. However the defect point would
play a nontrivial role, since after crossing this point, f@yn the left the pseudovaccum property
gets lost due to nontriangular matrix form k‘qﬂQo >. Instead of annihilating the local vaccum
|Qo >, the defect aj = 0 would turn it to a stat®|Qq > at the lower left corner of the matrix
F|Qo >, where operatod = —a€g/(?(Ps —Po)+4 (%)), and creating at the same time its conjugate
state—O'|Qq > at the upper right corner. This is expected to lead to thetior@annihilation of
guantum states by the defect point similar to that with itassolitons as we will observe below.
This tricky point however needs careful and separate aisadysl should be dealt with elsewhere.

It is crucial to check that the discrete DSG we constructatismived above should yield the
same DSG field model we are investigating here, at the camtidimit with lattice constA — 0.
Note that at this limit the canonical variables go to canahiields: uji — UE(x), pji — Ap*(X),

with [u*(x), p*(y)] = i6(x—Y). Therefore for extracting the limit we have to scqﬂﬁ giving
éPi ~ 1+iAp*(x). It is easy to check that this would yield from the Lax operatbthe lattice
SG model: 0™U>* — (14 AU (x)) + O(4?) the corresponding field Lax operatd™®* (x)
given by (2.2).

Concentrating on the defect poipt= 0 at the same limit, we get the expansion :

FS(A,ug,uy) — FO(A,ut(0),u(0)) +AFY(A,ut (0),u (0)) (3.23)
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which clearly yields onlyF% atA — 0, i.e. recovers the same BT matrix (3.4) at the continuum
limit, which was our essential requirement. Thereforeestihg all nontrivial terms we get finally
the continuum limit of (3.14)

T(A) = (el 7V 009 FO Ut (0),u™(0)) (=Y (1)) (3.24)

yielding our original DSG field model we are investigating.

3.4 Changing solitons in DSG and possible semifluxon formatn

The connection betweed® given by BT (3.3) suggests that the corresponding Jostisnhjt
which in turn yields the soliton solutions through inversattering method, are linked by the
BT matrix (3.4), i.e. by a multiplicative polynomial of firstrder in the spectral paramet&r
This concludes intriguingly that the role of the defect ixteate or annihilate a soliton! That is
u- = congt. ('vacuum’) solution would create due to (3.2) a 1-kink smntfor u* or similarly
u~ as 1-kink propagating through the defect point may be alatéd to a vacuum or transformed
into 2-kink, given byu™. Even richer solutions can occur in the DSG generalizing $ftiiation

, .e. u™ propagating afN-kink after passing through the defect pointxat 0 may turn into a
N + 1-kink (through creation of soliton) or into ld — 1-kink (through annihilation of soliton),
described by the solutiom™. We would like to clarify that though the* fields can be prolonged
formally to each others domain, the physically observaldklsi areu™ in the domainx < 0 and
ut in the semiaxix > 0, while at the defect point both of them are present linketheyBT (3.2).
Two such possible scenario are shown in Fig. 2 a-b). A pettigaestion arises here regarding
the obvious violation of topological charge in this SG moddth a defect. One should note
however that the topological charge arises in the SG modeldagree of mapping fro®t — St
while the coordinate-axis with a defect or a discontinuibynp (like a puncture in the sphere) can
not be mapped into a smooth sphereSbrviolating thus the concept of the topological charge
itself. Therefore in DSG the soitons seem to be no loger tapichl and hence their number may
change. This is also the reason why we can describe in thizefsrk semi-fluxons, as shown
below, which are nontopoogical entries. The possibilitgrefation/annihilation of solitons in DSG
has also been indicated in [25] through their analysis df@obkcattering processes. Our analysis
of this problem depending on the boundary conditions of thiel$iu* at space infinities will be
detailed elsewhere [14].

Experimental detection of semifluxons in early days [29] reeched now high level of so-
phistication, where FM and AFM arrays of semifluxons are plegkin recent clean experiements
[24]. However unlike fluxons exact analytic theory of seraxfins seems to be not available yet.
A standard theoretical approach is to take the criticalentrasls = I sinu, in the -ve half axis in
a SG model, whilds = Icsin(u+ 1) in the +ve half with ar-jump of its field, suffered after the
discontinuty or defect point at= 0, Another approach is to consider instead a damped driven SG
equation with additional terms likeug — us + n%sinui = y+ a6+ Bu, which are activated at
the discontinuty poink = 0 [2]. However these appoaches are numerical and approxirsiate
both the related defect SG models as described above amtegmible with no analytic solution.

Using the crucial BT between® fields and the intriguingreation/annihilation of solitons by
the defect point in our integrable DSG model together witloatiwl of the soliton phase shift,
we can formulate a possible exact theory of the semifluxorhyos allowing analytic solutions.
The creation of semifluxon arrays can be explained similaylyextending our construction to



248 A Kundu

'2t

Figure 2: Soliton a) creation (from 1 to 2-kink) and b) anlaition (2 to 1-kink) at the defect point
x =0 in the integrable defect SG

integrable muti-defect SG. Experimental semifluxons mayégcribed by the SG model with
a defect atx = 0, in the interval-L < x < 4L, whereL may be considered to be large for a
long Josepson junction. We take— o to get our integrable DSG model, for creating an exact
solution with a 0- 77 jump we consider a constant soutioh = 17, alongx > 0. Note that simply
u- = 0 is not a consistent solution, which should be constructed fnrom Backlund image (3.2)
yielding the equatioru, = ko(a)cos% ,ko(a) = (a+a!). Integrating this equation we get
the exact kink-solutioru™ = 4tan*1(§zﬁ), wherey = @(XJF Xp). It is crucial to note that
Xo comes as an arbitrary integration constant, for any valughaéh u~ is an exact solution of
above BT equation. For semi-fluxon solution we shall condide influence okg as the effective
intervention through the discontinuity point and chogge- L. This yieldsy(x=—L) =0 and
consequentlyu™(x = —L) = 4tan~1(0) = 0. Since for our model we should take— o, we
getu(—o) = 0,u”(0) = 4tan~(1) = 11, and as constant solution algd (+) = 7. This gives
clearly the topological charge of the solution on the wholis @sQ = (Ut («) —u™(w)) = 1,
describing a G- rrtransition of the field and hence a semifluxon!

Note that herer, (—L) = kg(a) = congt., L — o and+ 0 as in usual SG model, which however
is not required here since we use only BT for generating oactesoliton solution. Hamiltonian
density may be shifted by a const. to make the energy finite.

4 Concluding Remarks

We have investigated inhomogeneous SG models with vamabgs and variable soliton velocity
(VMSG) and with a defect at a point (DSG). We have shown thiigirability can be preserved
for both these models at the classical and at the exact qudetel with the construction of exact
soliton solutions exhibiting unusual changing propertiesthe VMSG model the exact solitons
can change velocity, shape, width and amplitude, simyatinder certain limiting conditions
soliton dynamics in some real systems of physica importamieghe DSG model on the other
hand solitons can change their number during their propagéty creating or annihilating soli-
tons while moving across the defect point. Physical evidesfcthis intriguing fact is yet to be
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confirmed in experiments. Based on our result on VMSG and D®@els we propose two dif-
ferent mechanisms for semikink formation, which may be wered as possible exact solutions
of semi-fluxons, observed in recent experiments.
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