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Abstract

We apply the discrete multiscale expansion to the Lax pair and to the first few symmetries
of the lattice potential Korteweg-de Vries equation. From these calculations we show that,
like the lowest order secularity conditions give a nonlinear Schrödinger equation, the Lax pair
gives at the same order the Zakharov and Shabat spectral problem and the symmetries the
hierarchy of point and generalized symmetries of the nonlinear Schrödinger equation.

1 Introduction

Reductive perturbation techniques [19, 20] have proved to be important tools for finding approxi-
mate solutions of many physical problems, by reducing a given nonlinear partial differential equa-
tion to a simpler equation, often integrable [3], and for proving integrability [3–5,10,21]. Recently,
after various attempts to carry over this approach to partial difference equations [1,11,13] we have
presented a procedure for carrying out a multiscale expansion on the lattice [7,12,14] which seems
to preserve the integrability properties [8]. To get a better understanding of the application of the
reductive perturbation technique on difference equations, after an introduction in Section 2 on
multiscale expansions on the lattice potential KdV equation (lpKdV), we discuss in Section 3 its
application to the spectral operator, as was done by Zakharov and Kuznetsov in their pioneering
work in 1986 [21] for the KdV equation. Later on we apply, in Section 4, the multiscale expansion
to the symmetries of the lpKdV [15]. Section 5 is devoted to a few conclusive remarks.
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2 Multiscale expansion on the lattice

The aim of this Section is to give a terse survey on the multiscale analysis on the lattice and its
application to the reduction of the lpKdV. We refer to [7,12,14] for further details.

2.1 Shift operators defined on the lattice

Let un : Z → R be a function defined on a lattice of indexn ∈ Z. One can always extend it to
a functionu(x) : R → R by defining a real continuous variablex = nσx, whereσx ∈ R is the
constant lattice spacing.

An equation defined on the lattice is a functional relation between the functionun and its
shifted valuesun±1, un±2, etc, expressed in terms of a shift operatorTn such thatTnun = un+1.

For the continuous functionu(x) we can introduce an operatorTx, such thatTxu(x) =
u(x + σx). The Taylor expansion ofu(x + σx) centered inx reads

Txu(x) =

∞∑

i=0

σi
x

i!
u(i)(x), (2.1)

whereu(i)(x) = diu(x)/dxi = di
xu(x), with dx the total derivative. Eq. (2.1) suggests the

following formal expansion for the differential operatorTx:

Tx = eσxdx =
∞∑

i=0

σi
x

i!
di

x.

Introducing a formal derivative with respect to the indexn, sayδn, we can define, by analogy with
Tx, the operatorTn as

Tn = eδn =
∞∑

i=0

δi
n

i!
. (2.2)

The formal expansion (2.2) can be inverted, yielding

δn = ln Tn = ln(1 + ∆n) =
∞∑

i=1

(−1)i−1

i
∆i

n, (2.3)

where∆n = Tn − 1 is the discrete right difference operator w.r.t. the variable n (i.e. ∆nun =
un+1 − un).

Following [12,14] we say thatun is aslow-varying function of orderℓ iff ∆ℓ+1
n un = 0. Hence

the δn operators are formal series containing infinite powers of∆n, but, acting on slow-varying
functions of orderℓ, they reduce to polynomials in∆n of order at mostℓ.

2.2 Dilations on the lattice

Let us introduce a second lattice, obtained from the first by adilation. Forx ∈ R we can visualize
the problem as a change of variable betweenx andx1 = ǫx, 0 < ǫ ≪ 1. On the lattice this
corresponds to a change from the indexn = x/σx to the new indexn1 = x1/σx1

, whereσx1

is the new lattice spacing. Assuming thatσx1
≫ σx we can setσx = εσx1

, 0 < ε ≪ 1,



Multiscale Expansion and Integrability Properties of the Lattice Potential KdV Equation 325

so thatn1 = ǫεn. As n, n1 ∈ Z, ǫε is a rational number and one can define in all generality
ǫε = M1/N ≪ 1 with M1, N ∈ N. However, if we want the lattice of indexn1 to be a sublattice
of the lattice of indexn, we have also to require thatM1/N = 1/M with M ∈ N.

The relation between the discrete derivatives defined in thetwo lattices is given by [7,9,13,14]

∆j
nun = j!

∞∑

i=j

Pi,j

i!
∆i

n1
un1

. (2.4)

The coefficientsPi,j read

Pi,j =

i∑

k=j

(
M1

N

)k

Sk
i S

j
k,

whereSk
i andS

j
k are the Stirling numbers of the first and second kind respectively.

If un is a function of infinite order of slow-varyness, i.e.ℓ = ∞, then Eq. (2.4) implies that
a finite difference in the discrete variablen depends on an infinite number of differences on the
variablen1.

2.3 Discrete multiscale expansion

Let us now considerun = un;n1
as a function depending on a fast indexn and a slow index

n1 = n(M1/N). At the continuous level, the total derivativedx acting on functionsu(x;x1) is
the sum of partial derivatives, i.e.dx = ∂x + ǫ∂x1

. As

Tx = eσxdx = eσx∂xeǫσx∂x1 , (2.5)

we can write the total shift operatorTn as

Tn = eδne(M1/N)δn1 = TnT
(M1/N)

n1
, (2.6)

where the partial shift operatorsTn,Tn1
, defined byTnun;n1

= un+1;n1
andTn1

un;n1
= un;n1+1,

are given by

Tn =

∞∑

i=0

δi
n

i!
, T (M1/N)

n1
=

∞∑

i=0

(M1/N)i

i!
δi
n1

,

andδn1
is given by Eq. (2.3) withn substituted byn1.

Eq. (2.5) can be extended to the case ofK slow variablesxi = ǫix, 1 ≤ i ≤ K . Then the
action of the shift operatorTn on a functionun;{ni}K

i=1

depending on both fast and slow variables
can be written in terms of the partial shiftsTn,Tni

as

Tn = Tn

K∏

i=1

T
(ǫni

)
ni

, (2.7)

where theǫni
’s are suitable functions ofǫ andε depending parametrically on some integer coeffi-

cientsMi ∈ N, 1 ≤ i ≤ K.
To carry out the multiscale expansion of the fields appearingin partial difference equations

with two independent discrete variables, one has to consider the action of the operator (2.7) on a
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function depending on two fast indicesn andm, and on a set ofKn + Km slow variables{ni}
Kn

i=1

and{mi}
Km

i=1 (we shall use the notationu
n,m;{ni}

Kn
i=1

,{mi}
Km
i=1

for such functions). Notice that in

principle it is possible to considerKn = Km = ∞. We assume a common definition of the small
parameterǫ for both discrete variablesn andm but we denote withMi the integers for the slow
variablesni and withM̃i the ones formi. We have:

ǫni
=

Mi

N i
, 1 ≤ i ≤ Kn, ǫmi

=
M̃i

N i
, 1 ≤ i ≤ Km.

Hereafter we shall assumeKn = 1 andKm = K.

2.4 Multiscale expansion of the lattice potential KdV equation

The lpKdV is given by [17]:

[µ(TnTm − 1) + ζ(Tn − Tm)]un,m − (Tn − Tm)un,m(TnTm − 1)un,m = 0, (2.8)

whereµ = p − q andζ = p + q, andp, q, p 6= q, are two real parameters. The linear part of
Eq. (2.8) has a travelling wave solution of the formun,m = exp {i[κn − ω(κ)m]} with

ω(κ) = −2 arctan

(
ζ + µ

ζ − µ
tan

κ

2

)
. (2.9)

According to [7] the multiscale expansion of Eq. (2.8) is performed taking into account that

un,m =
∑

α∈Z

∞∑

k=1

1

Nk
u

(α)
k (n1, {mi}

K
i=1)e

iα(κn−ωm), u
(−α)
k = ū

(α)
k . (2.10)

The following statement, proved in [7], provides the multiscale expansion of the lpKdV (2.8)
at the lowest orders of1/N .

Theorem 1. The multiscale expansion of Eq. (2.8) gives the following results:

1. O(1/N):

• α = 0: the equation is identically satisfied.

• α = 1: one gets a linear equation identically satisfied by taking into account the
dispersion relation (2.9).

• |α| ≥ 2: one gets a linear equation whose only solution isu
(α)
1 = 0.

2. O(1/N2):

• α = 1: one gets a linear equation whose solution is

u
(1)
1 = u

(1)
1 (n2, {mi}

K
i=2), n2 = n1 ∓ m1, (2.11)

provided that

M1 = ∓S
(
µ − ζeiκ

)
, M̃1 = Seiκ ζ2 − µ2

µeiκ − ζ
.

HereS = r exp (iθ), with r > 0 andθ = − arctan [(ζ sinκ)/(ζ cos κ − µ)], assures
thatM1 andM̃1 are positive integers.
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• α = 0: one gets

δn2
u

(0)
1 = τ1|u

(1)
1 |2, τ1 = ±

2
(
1 + eiκ

)2

Seiκ(µ + ζ) (µ − ζeiκ)
,

whereu
(0)
1 = u

(0)
1 (n2, {mi}

K
i=2).

• α = 2: one gets

u
(2)
2 = τ2(u

(1)
1 )2, τ2 =

1 + eiκ

(1 − eiκ)(µ + ζ)
,

whereu
(2)
2 = u

(2)
2 (n2, {mi}

K
i=2).

3. O(1/N3):

• α = 1: one gets the following (defocusing) dNLS:

iδm2
u

(1)
1 = ρ1δ

2
n2

u
(1)
1 + ρ2u

(1)
1 |u

(1)
1 |2, (2.12)

where

ρ1 = −
µζr2(ζ2 − µ2) sin κ

M̃2 (ζ2 + µ2 − 2ζµ cos κ)
, ρ2 =

8ζµ(ζ − µ)(1 + cos κ)2 sin κ

M̃2(µ + ζ) (ζ2 + µ2 − 2ζµ cos κ)2
.

• α = 0: one gets

δn2
u

(0)
2 = τ1

(
u

(1)
1 ū

(1)
2 + ū

(1)
1 u

(1)
2

)
− τ3

(
ū

(1)
1 δn2

u
(1)
1 − u

(1)
1 δn2

ū
(1)
1

)
,

with

τ3 =
2i sin κ

µ + ζ
,

whereu
(0)
2 = u

(0)
2 (n2, {mi}

K
i=2) andu

(1)
2 = u

(1)
2 (n2, {mi}

K
i=2).

• α = 2: one gets

u
(2)
3 = τ4u

(1)
1 (δn2

u
(1)
1 ) + 2τ2u

(1)
1 u

(1)
2 , τ4 = ±

2Seiκ(α + βeiκ)

(eiκ − 1)2(µ + ζ)
,

whereu
(2)
3 = u

(2)
3 (n2, {mi}

K
i=2).

We have given above just those results necessary to get a discrete nonlinear Schrödinger equa-
tion (dNLS) as a secularity condition and its symmetries.
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3 Multiscale expansion of the lpKdV spectral problem

As shown in [14] there are many forms for the linear problems associated with the lpKdV. The
first to be introduced [17] is given by first order2× 2 matrix difference equations. Later on [14] it
was shown that the matrix Lax pair could be easily reduced to ascalar non-symmetric difference
equation of second order, used by Boiti et. al. [2] to integrate an alternative form of the equations of
the Volterra hierarchy. In [15] it was moreover shown that bya Miura transformation it is possible
to associate the lpKdV with the Toda spectral problem introduced by Manakov and Flaskha [6]
when the fieldbn(t) = 0.

One could start from any of the three linear problems delineated in the previous paragraph to do
the multiscale expansion. However we choose as starting spectral problem the one whose second
derivative is expressed in a symmetric form, i.e. the discrete Schrödinger spectral problem used to
integrate the Toda and Volterra equations.

Then-evolution equation of the (scalar) spectral problem of thelpKdV (2.8) may be written
as [15]:

φn−1 + anφn+1 = µφn, (3.1)

with

an =
4p2

[2p − (T 2
n + 1)un,m]

[
2p − (Tn + T−1

n )un,m

] .

Hereµ ∈ C is the spectral parameter.
Our aim is now to perform the multiscale expansion of Eq. (3.1) in order to get the corre-

sponding evolution equation of the spectral problem of the dNLS (2.12). We refer to [21] for the
continuous counterpart of this analysis.

To expand Eq. (3.1) we consider the development (2.10) for the fieldun,m, with the restriction
(2.11), while the functionφn will be expanded according to the formula:

φn =
∑

α odd

∞∑

k=0

1

Nk
φ

(α)
k (n2, {mi}

K
i=2)e

iα(κn−ωm)/2, φ
(−α)
k = φ̄

(α)
k . (3.2)

At orderO(1), the multiscale analysis of Eq. (3.1) suggests the following expansion for the
spectral parameterµ:

µ = 2cos
(κ

2

)
+

∞∑

k=1

µk

Nk
. (3.3)

Taking into account Eq. (3.3) we proceed to the orderǫ = 1/N of the multiscale expansion of
Eq. (3.1). We have:

δn2
φ

(1)
0 +

2u
(1)
1

p
cos2

(κ

2

)
φ̄

(1)
0 = −

iµ1

2 sin
(

κ
2

)φ
(1)
0 , (3.4)

for α = 1. The corresponding equation forα = −1 is given by performing the complex conjuga-
tion of Eq. (3.4). The coefficients of the higher harmonics inEq. (3.2) can be written in terms of
φ

(1)
0 . For instance, forα = 3, we have:

φ
(3)
1 =

e2iκ + eiκ

1 − eiκ
u

(1)
1 φ

(1)
0 ,
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By a proper rescaling ofφ(1)
0 andµ1 Eq. (3.4) is equivalent to the standard Zakharov-Shabat

spectral problem of the integrable NLS [18].

4 Multiscale expansion of the first two generalized symmetries

Lie symmetries of a lattice equationD(un,m, T±
n un,m, T±

mun,m, . . .) = 0 are given by those
continuous transformations which leave the equation invariant. HereT±k

n un,m = un±k,m and
T±k

m un,m = un,m±k, k ∈ N. From the infinitesimal point of view they are obtained by requiring
the infinitesimal invariant condition

pr X̂n,m D

∣∣∣
D=0

= 0, (4.1)

where

X̂n,m = Fn,m(un,m, T±
n un,m, T±

mun,m, . . .)∂un,m
. (4.2)

By pr X̂n,m we mean the prolongation of the infinitesimal generatorX̂n,m to all points appearing
in D = 0.

If Fn,m = Fn,m(un,m) then we getpoint symmetriesand the procedure to get them from
Eq. (4.1) is purely algorithmic [16].Generalized symmetriesare obtained when

Fn,m = Fn,m(un,m, T±
n un,m, T±

mun,m, . . .).

In the case of nonlinear discrete equations, the Lie point symmetries are not very common, but, if
the equation is integrable and there exists a Lax pair, it is possible to construct an infinite family
of generalized symmetries.

In correspondence with the infinitesimal generator (4.2) wecan in principle construct a group
transformation by integrating the initial boundary problem

dũn,m(λ)

dλ
= Fn,m(ũn,m(λ), T±

n ũn,m(λ), T±
m ũn,m(λ), . . .), ũn,m(λ = 0) = un,m, (4.3)

whereλ ∈ R is the continuous Lie group parameter. This can be done effectively only in the
case of point symmetries, as in the generalized case we have adifferential-difference equation
for which we cannot find the solution for a generic initial data, but, at most, we can find some
particular solutions. Eq. (4.1) is equivalent to the request that theλ-derivative of the equation
D = 0, written for ũn,m(λ), is identically satisfied when theλ-evolution ofũn,m(λ) is given by
Eq. (4.3). This is also equivalent to say that the flows (in thegroup parameter space) given by
Eq. (4.3) are compatible or commute withD = 0.

In [15] one can find an infinite hierarchy of integrable generalized symmetries for the lpKdV
(2.8) constructed by looking at the isospectral deformations of the Lax pair. The first two symme-
tries of this hierarchy are given by

dũn,m

dλ
=

1

2p + (T−
n − Tn)ũn,m

−
1

2p
, (4.4)

dũn,m

dλ
=

1

[2p + (T−
n − Tn)ũn,m]2

[
1

2p + (1 − T 2
n)ũn,m

+
1

2p + (T−2
n − 1)ũn,m

]
−

1

4p3
.

(4.5)
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The constant terms appearing in the r.h.s. of Eqs. (4.4,4.5)ensure that the above flows go asymp-
totically to zero as̃un,m → cost.

To perform the multiscale expansion of the generalized symmetries (4.4,4.5) we consider the
following development for the field̃un,m, see Eq. (2.10):

ũn,m =
∑

α∈Z

∞∑

k=1

1

Nk
ũ

(α)
k (n2, {mi}

K
i=2, {λi}

K ′

i=0)e
iα(κn−ωm), ũ

(−α)
k = ¯̃u

(α)
k , (4.6)

where λi = λ/N i are the slow-varying group parameters,n2 is given by Eq. (2.11) and
ũn,m({λi = 0}K ′

i=0) = un,m.

Since Eq. (2.12) involves the harmonicu
(1)
1 we are actually interested just in those equations,

arising from the multiscale expansions of the symmetries (4.4, 4.5), which are written in terms this
harmonic. The following statement holds.

Theorem 2. The multiscale expansion up to order1/N4 of the symmetry (4.4) gives the following
symmetries for the dNLS (2.12) (after a reparametrization of the group parameters):

O(1/N) :
∂ũ

(1)
1

∂λ
= iũ

(1)
1 , (4.7)

O(1/N2) :
∂ũ

(1)
1

∂λ1
= δn2

ũ
(1)
1 , (4.8)

O(1/N3) :
∂ũ

(1)
1

∂λ2
= δm2

ũ
(1)
1 , (4.9)

O(1/N4) :
∂ũ

(1)
1

∂λ3
= ρ1δ

3
n2

ũ
(1)
1 + 3ρ2|ũ

(1)
1 |2δn2

ũ
(1)
1 , (4.10)

with initial condition ũ
(1)
1 (λ = 0, λ1 = 0, λ2 = 0, λ3 = 0) = u

(1)
1 . Eqs. (4.7,4.8,4.9) provide

point symmetries of Eq. (2.12), while Eq. (4.10) is a generalized symmetry of Eq. (2.12).

Proof. The proof is done by a direct computation by taking into account the results contained in
Theorem 1.

Inserting Eq. (4.6) in the first symmetry (4.4) we get the following determing equations:

O(1/N) :
∂ũ

(1)
1

∂λ
=

i

2p2
sin κ ũ

(1)
1 , (4.11)

O(1/N2) :
∂ũ

(1)
2

∂λ
+

∂ũ
(1)
1

∂λ1
=

i

2p2

(
sin κ ũ

(1)
2 − iM1 cos κ δn2

ũ
(1)
1

)
, (4.12)

O(1/N3) :
∂ũ

(1)
3

∂λ
+

∂ũ
(1)
2

∂λ1
+

∂ũ
(1)
1

∂λ2
= (4.13)

=
i

2p2

(
sin κ ũ

(1)
3 − iM1 cos κ δn2

ũ
(1)
2 +

M2
1

2
sinκ δ2

n2
ũ

(1)
1

)
+

+
i

p3

(
−i sin κ sin(2κ)¯̃u

(1)
1 u

(2)
2 + M1 sin κ ũ

(1)
1 δn2

ũ
(0)
1

)
+

+
3i

2p4
sin3 κ |ũ

(1)
1 |2ũ

(1)
1 ,
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O(1/N4) :
∂ũ

(1)
4

∂λ
+

∂ũ
(1)
3

∂λ1
+

∂ũ
(1)
2

∂λ2
+

∂ũ
(1)
1

∂λ3
= (4.14)

=
i

2p2

(
sin κ ũ

(1)
4 − iM1 cos κ δn2

ũ
(1)
3 +

M2
1

2
sinκ δ2

n2
ũ

(1)
1 −

−
iM3

1

3
cos κ δ3

n2
ũ

(1)
1

)
+

+
i

p3

[
−i sinκ sin(2κ)

(
¯̃u

(1)
1 ũ

(2)
3 + ¯̃u

(1)
2 ũ

(2)
2

)
+

+M1 sin κ
(
¯̃u

(1)
1 δn2

ũ
(2)
2 + ũ

(1)
1 δn2

ũ
(0)
2 + ũ

(1)
2 δn2

ũ
(0)
1

)
−

−iM2
1 cos κ ũ

(1)
1 δ2

n2
ũ

(0)
1

]
+

+
3i

2p 4

[
−iM1 cos κ sin2 κ (ũ

(1)
1 )2δn2

¯̃u
(1)
1 +

+ sin3 κ
(
¯̃u

(1)
2 (ũ

(1)
1 )2 + 2ũ

(1)
2 |ũ

(1)
1 |2

)]
.

Let us consider Eq. (4.11); by the reparametrizationλ 7→ 2p2λ/ sin κ, Eq. (4.11) is equivalent
to Eq. (4.7). This is the first point symmetry of the dNLS (2.12) and it corresponds to a phase
symmetry.

Eq. (4.12) has to be split into the following equations to avoid secularities:

∂ũ
(1)
1

∂λ1
=

M1

2p2
cos κ δn2

ũ
(1)
1 , (4.15)

∂ũ
(1)
2

∂λ
=

i

2p2
sin κ ũ

(1)
2 . (4.16)

From Eq. (4.16) we see that̃u
(1)
2 depends onλ asũ

(1)
1 . Eq. (4.15) provides the second point

symmetry (4.8) of the dNLS (2.12), corresponding to translations w.r.t. the indexn2, after the
reparametrizationλ1 7→ 2p2λ1/(M1 cos κ).

From Eq. (4.13), taking into account Eqs. (4.11,4.16) and the secularity conditions, a straight-
forward algebra and the reparametrizationλ2 7→ 4p2ρ1λ2/(M

2
1 sin κ) leads to

i
∂ũ

(1)
1

∂λ2
= ρ1δ

2
n2

ũ
(1)
1 + ρ2ũ

(1)
1 |ũ

(1)
1 |2,

which leads to Eq. (4.9) thanks to Eq. (2.12). Eq. (4.9) meansthat the dNLS (2.12) is invariant
under translations w.r.t. the indexm2.

Finally, Eq. (4.14) gives Eq. (4.10) after a long computation by taking into account Eqs.
(4.11,4.12,4.13). In this last case the reparametrizationof the group parameter reads

λ3 7→ 12p2ρ1λ3/(M
3
1 cos κ).

A computation up to order1/N4, similar to the one just done for the symmetry (4.4), shows
that the multiscale expansion of the second generalized symmetry (4.5) of the lpKdV (2.8) gives
the same symmetries (4.7,4.8,4.9,4.10), after suitable reparametrizations of the group parameters.
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5 Concluding remarks

In this paper we have considered the multiscale expansion ofthe spectral problem and of the
symmetries of the partial difference integrable lattice potential KdV equation. By a proper choice
of the spectral problem of the lpKdV we have been able to derive from it the spectral problem of
the reduced equation, a nonlinear Schrödinger equation. We then did the multiscale expansion of
two generalized symmetries. A generalized symmetry provides us with the point and generalize
symmetries of the nonlinear Schrödinger equation. At eachorder of the multiscale approximation,
we get by reduction from the request that no secular condition exists, a higher order symmetry.
The same calculation for other generalized symmetries do not provide anything new. All the
information concerning the whole hierarchy of generalizedsymmetries for the NLS is contained
in the first generalized symmetry for the lpKdV.
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