Optimism and Pessimism in Decision Making Based on Intuitionistic Fuzzy Sets

Ting-Yu Chen¹ Che-Wei Tsui²

¹Department of Business Administration, Chang Gung University ²Graduate Institute of Industrial Engineering and Engineering Management, National Tsing Hua University

Abstract

This paper presents a method of relating optimism and pessimism to multiple criteria decision analysis based on intuitionistic fuzzy sets. We develop the concepts of optimistic and pessimistic point operators to measure optimism and pessimism, respectively. Furthermore, we provide an approach to effectively capture the influences of optimism and pessimism on multiple criteria decision making. The suitability function is assessed according to the influence upon overall judgments or upon individual outcomes. Finally, we establish two algorithms to solve a multicriteria decision making problem.

Keywords: Optimism, pessimism, multiple criteria decision analysis, intuitionistic fuzzy set, point operator

1. Introduction

Intuitionistic fuzzy set (IFS for short), introduced by Atanassov (1986, 1999), is characterized by three functions expressing the degree of belongingness, the degree of nonbelongingness, and the degree of hesitation. IFSs have been found to be highly useful to deal with uncertainty and vagueness (Xu and Yager, 2008) and have become a popular topic of investigation in the fuzzy set community (Dubois et al., 2005). Although a considerable number of studies have been made on intuitionistic fuzzy multiple criteria decision making, little attention has been given to the issue of optimism and pessimism. Optimism and pessimism are fundamental inner psychological characteristics that both determine and reflect how a person responds to his or her perceived environment. The evidence in psychology suggests that one main channel through which dispositional optimism works is through developing coping habits or behavior that is more likely to lead to desired outcomes (Friedman et al., 1995; Puri and Robinson, 2007).

In view of multi-criteria decision making problems, optimism and pessimism can reflect individual differences of different decision makers. In addition, they tend to be both consistent and enduring. It follows that optimism and pessimism consistently influence how the decision maker responds to the decision environment. Therefore, the identification of their influence on the decision making process is highly valuable and useful in multiple criteria decision analysis. In this research, we will develop optimistic and pessimistic estimations based on IFSs to multi-criteria decision analysis, where optimism and pessimism are measured by using optimistic and pessimistic point operators, respectively. In addition, several important properties will be examined and discussed. For decision aiding, we provide an approach relating optimism and pessimism to multi-criteria decision analysis under the intuitionistic fuzzy decision environment.

2. Preliminaries

The concept of IFSs is a generalization ordinary fuzzy sets. We briefly review some relevant definitions, relations, and operations of IFSs.

Definition 2.1. Let *X* be an ordinary finite non-empty set. An IFS A in X is an expression given by:

(1) $A = \left\{ \left\langle x, \mu_A(x), V_A(x) \right\rangle \middle| x \in X \right\},\$ where $\mu_A(x)$: $X \rightarrow [0,1], v_A(x)$: $X \rightarrow [0,1]$ with $0 \le \mu_A(x) + \nu_A(x) \le 1$. The numbers $\mu_A(x)$ and $\nu_A(x)$ denote the membership degree and the non-membership degree of the element x in A, respectively.

Definition 2.2. For each IFS A in X, the value of

 $\pi_{A}(x) = 1 - \mu_{A}(x) - v_{A}(x)$ (2)

represents the the intuitionistic index.

Definition 2.3. For every IFS A and for every $\alpha, \beta \in [0,1]$:

$$J_{\alpha,\beta}(A) = \left\{ \langle x, \mu_A(x) + \alpha \cdot \pi_A(x), \beta \cdot \nu_A(x) \rangle | x \in X \right\}$$
(3)

$$J_{\alpha,\beta}^*(A) = \left\{ \langle x, \mu_A(x) + \alpha \cdot (1 - \mu_A(x) - \beta \cdot \nu_A(x)), \beta \cdot \nu_A(x) \rangle | x \in X \right\}$$
(4)

$$H_{\alpha,\beta}(A) = \left\{ \langle x, \alpha \cdot \mu_A(x), \nu_A(x) + \beta \cdot \pi_A(x) \rangle | x \in X \right\}$$
(5)

$$H_{\alpha,\beta}^*(A) = \left\{ \langle x, \alpha \cdot \mu_A(x), \nu_A(x) + \beta \cdot (1 - \alpha \cdot \mu_A(x) - \nu_A(x)) \rangle | x \in X \right\}$$
(6)

$$P_{\alpha,\beta}(A) = \left\{ \langle x, \max(\mu_A(x), \alpha), \min(\nu_A(x), \beta) \rangle | x \in X \right\}$$
(7)

(8) $Q_{\alpha,\beta}(A) = \left\{ \left\langle x, \min(\mu_A(x), \alpha), \max(\nu_A(x), \beta) \right\rangle \middle| x \in X \right\}$

3. Optimistic and Pessimistic Estimations on IFSs

This paper relates optimism and pessimism to multi-criteria decision making behavior and establishes appropriate assessment tools for measuring them in decision analysis. Optimists construe their lives and future states of the world positively, whereas pessimists construe their lives and future states of the world negatively. In addition, optimists expect greater overall utility or favorable outcomes, but pessimists expect less overall utility

or unfavorable outcomes. The above rationale coincides with several Atanassov's operators, including $J_{\alpha,\beta}$, $J_{\alpha,\beta}^{*}$, $H_{\alpha,\beta}$, $H_{\alpha,\beta}^*$, $P_{\alpha,\beta}$ and $Q_{\alpha,\beta}$. By extension we will develop new point operators denoted by J_{α_x,β_x} , $J^*_{\alpha_x,\beta_x}$, H_{α_x,β_x} , $H^*_{\alpha_x,\beta_x}$, P_{α_x,β_x} and Q_{α_i,β_i} for each point $x \in X$ and $\alpha_r, \beta_r \in [0,1]$. These estimations on IFSs are called as optimistic or pessimistic point operators.

Definition 3.1. For each $x \in X$, taking $\alpha_x, \beta_x \in [0,1]$ we define optimistic point operators $J_{\alpha_{i},\beta_{i}}, J^{*}_{\alpha_{i},\beta_{i}}, P_{\alpha_{i},\beta_{i}} : IFS(X) \rightarrow IFS(X)$ as follows, for $A \in IFS(X)$:

(9) $J_{\alpha,\beta}(A) = \left\{ \left\langle x, \mu_A(x) + \alpha_x \cdot \pi_A(x), \beta_x \cdot \nu_A(x) \right\rangle \middle| x \in X \right\}$

(10) $J_{\alpha,\beta}(A) = \left\{ \left\langle x, \mu_A(x) + \alpha_x \cdot (1 - \mu_A(x) - \beta_x \cdot \nu_A(x)), \beta_x \cdot \nu_A(x) \right\rangle | x \in X \right\}$

 $P_{\alpha,\beta}(A) = \left\{ \langle x, \max(\mu_A(x), \alpha_x), \min(\nu_A(x), \beta_x) \rangle | x \in X \right\} \text{for}_{\alpha_A + \beta_A \le 1} (11)$

Definition 3.2. For each $x \in X$, taking $\alpha_{x}, \beta_{x} \in [0,1]$ we define pessimistic point operators $H_{\alpha_{i},\beta_{i}}, H^{*}_{\alpha_{i},\beta_{i}}, Q_{\alpha_{i},\beta_{i}} : IFS(X) \rightarrow IFS(X)$ as follows, for $A \in IFS(X)$:

(12) $H_{\alpha,\beta}(A) = \left\{ \left\langle x, \alpha_x \cdot \mu_A(x), v_A(x) + \beta_x \cdot \pi_A(x) \right\rangle \middle| x \in X \right\}$ (13) $H_{\alpha_{x},\beta_{x}}^{*}(A) = \left\{ \left\langle x, \alpha_{x} \cdot \mu_{A}(x), \nu_{A}(x) + \beta_{x} \cdot (1 - \alpha_{x} \cdot \mu_{A}(x) - \nu_{A}(x)) \right\rangle \middle| x \in X \right\}$ (14) $Q_{\alpha,\beta}(A) = \left\{ \left\langle x, \min(\mu_{\lambda}(x), \alpha_{\lambda}), \max(\nu_{\lambda}(x), \beta_{\lambda}) \right\rangle | x \in X \right\}$

Definition 3.3 Let $\kappa_1 \kappa_2$ be real numbers and let $a_1, a_2, \dots, a_n \in [0,1]$. For *n* IFSs A_1, A_2, \dots, A_n , we define the averaging operations based on generalized means:

$$A_1 \underset{\kappa,\kappa}{\otimes} A_2 = \underset{i=1}{\overset{2}{\otimes}} A_i$$
(15)

and

6

$$\overset{n}{\underset{i=1}{\otimes}} A_{i} = \left\{ \left\langle x, f(\kappa_{1}, \mu_{A_{1}}(x), \mu_{A_{2}}(x), \cdots, \mu_{A_{n}}(x)), (16) \right. \\ \left. f(\kappa_{2}, \nu_{A_{1}}(x), \nu_{A_{2}}(x), \cdots, \nu_{A_{n}}(x)) \right| x \in X \right\}$$

Proceedings of the 11th Joint Conference on Information Sciences (2008) Published by Atlantis Press © the authors 2

where $f(\kappa, a, a_2, \dots, a_n) = \begin{cases} \left(\frac{a_1^{\kappa} + a_2^{\kappa} + \dots + a_n^{\kappa}}{n}\right)^{\lambda_n}, & \text{if } \kappa > 0 \text{ or } (\kappa < 0 \text{ and } (17)) \\ a_1 \cdot a_2 \cdots a_n > 0); \\ (a_1 \cdot a_2 \cdots a_n)^{\lambda_n}, & \text{if } \kappa = 0; \\ 0, & \text{otherwise.} \end{cases}$

4. Application in Multi-Criteria Decision Making

This section presents an approach for handling optimism and pessimism in multi-criteria decision making problems under the intuitionistic fuzzy environment. By similar definitions of Li (2005) and Lin et al. (2007), the evaluations of each alternative with respect to each criterion on a fuzzy concept "excellence" are given using IFSs. Suppose that there exists a non-inferior alternative set $X = \{x_1, x_2, ..., x_m\}$. Each alternative is assessed on *n* criteria, denoted by $A = \{A_1, A_2, ..., A_n\}$. Assume that μ_{ii} and ν_{ii} are the degree of membership and the degree of non-membership of the alternative $x_i \in X$ with respect to the criterion $A_i \in A$ to the fuzzy concept "excellence", respectively, where $0 \le \mu_{ii} \le 1$, $0 \le v_{ij} \le 1$ and $0 \le \mu_{ij} + v_{ij} \le 1$. Denote that $X_{ii} = \{ \langle x_i, \mu_{ii}, \nu_{ii} \rangle \}$. The intuitionistic index of the alternative x_i in the set X_{ij} is defined by c.

4.1. An approach utilizing optimistic and pessimistic point operators

Assume that the decision maker consider evaluative criteria all equally important for simplicity. The suitability function to determine the degrees to which the alternative x_j satisfies and does not satisfy the decision maker's requirement can be measured as follows:

$$\sum_{i=1}^{n} A_{i} = \left\{ \left(x_{j}, f(\kappa_{1}, \mu_{1j}, \mu_{2j}, \cdots, \mu_{nj}), f(\kappa_{2}, \nu_{1j}, \nu_{2j}, \cdots, \nu_{nj}) \right) | x_{j} \in X \right\}$$
(18)

If an optimistic decision maker construe overall judgment positively and expect favorable synthetic evaluation, the suitability function to determine the degrees to which the alternative x_j satisfies and does not satisfy the decision maker's requirement becomes $\int_{a_{ij}, d_{ij}} \left(\bigotimes_{i=1}^{\alpha} A_i \right) \cdot \int_{a_{ij}, d_{ij}} \left(\bigotimes_{i=1}^{\alpha} A_i \right) \cdot If$ an optimistic decision maker reconstructs the decision matrix with more desirable outcomes, the suitability function will be $\bigotimes_{i=1}^{n} J_{a_{ij}, d_{ij}} (A_i)$, c or $\bigotimes_{i=1}^{n} P_{a_{ij}, d_{ij}} (A_i)$.

On the contrary, if a pessimistic decision maker reflects negative attitude on overall judgments, the suitability function must adjust to $H_{\alpha_{i_1},\beta_{i_1}}(\overset{n}{\underset{i=1}{\otimes}}A_i)$, $H^*_{\alpha_{i_1},\beta_{i_1}}(\overset{n}{\underset{i=1}{\otimes}}A_i)$ or $Q_{\alpha_i,\beta_i}(\overset{n}{\underset{i=1}{\underset{i=1}{\overset{n}{\underset{i=1}{\overset{n}{\underset{i=1}{\overset{n}{\underset{i=1}{\overset{n}{\underset{i=1}{\overset{n}{\underset{i=1}{\overset{n}{\underset{i=1}{\overset{n}{\underset{i=1}{\underset{i=1}{\overset{n}{\underset{i=1}{\underset{i=1}{\overset{n}{\underset{i=1}{\underset{i=1}{\overset{n}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\overset{n}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\overset{n}{\underset{i=1}{\atopi=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\atopi=1}{\atopi=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\atopi$ er modifies the decision matrix with more adverse outcomes, the corresponding suitability function is $\bigotimes_{i=1}^{n} H_{\alpha_{i},\beta_{i}}(A_{i}) \quad ,$ $\underset{i=1}{\overset{n}{\underset{\alpha_{x_i},\beta_{x_i}}{\underset{\beta_i}{\atop{\beta_i}{\atop{\beta_$ the degree of suitability to which the alternative x_i satisfies the decision maker's requirement on the basis of the score function.

Definition 4.1. Let $X = \{x_1, x_2, ..., x_m\}$ be the set of the considered alternatives, and let $A = \{A_1, A_2, ..., A_n\}$ be the set of the criteria used for evaluating the alternatives. Let $\alpha_{x_j}, \beta_{x_j} \in [0,1]$ for all $x_j \in X$. Assume that individual differences in virtue of optimism or pessimism influence overall judgments. The suitability function to determine the degrees to which the alternative x_j satisfies and does not satisfy the decision maker's requirement can be measured as follows:

(i) For the optimistic condition:

$$\begin{split} &J_{\alpha_{i},\alpha_{i}}(\overset{o}{\otimes},A) = J_{\alpha_{i},\beta_{i}}\left(\left\{ X_{i},f(\kappa_{i},\mu_{i},\mu_{2i},\cdots,\mu_{qi}),f(\kappa_{i},\nu_{i},\nu_{2i},\cdots,\nu_{qi}) \right\} x_{j} \in X \right\} \\ &= \left\{ x_{i},f(\kappa_{i},\mu_{i},\mu_{2i},\cdots,\mu_{qi}) + \alpha_{i} \cdot \left\{ 1 - f(\kappa_{i},\mu_{ii},\mu_{2i},\cdots,\mu_{qi}) - f(\kappa_{i},\nu_{ii},\nu_{2i},\cdots,\nu_{qi}) \right\} x_{j} \in X \right\}, \end{split}$$
(19)

or

$$J_{a_{i_{n_{j}},a_{i_{j}}}^{*}}\left(\bigcup_{i_{j}}^{*} A_{i} \right) = J_{a_{i_{n_{j}},a_{j}}^{*}} \left\{ \left\{ x_{i_{j}}, f(\kappa_{i_{1},\mu_{i_{j}},\mu_{i_{j}},\dots,\mu_{i_{j}}), f(\kappa_{i_{1},\nu_{i_{j}},\mu_{i_{j}},\dots,\nu_{i_{j}}) \right\} | x_{i_{j}} \in X \right\} \\ = \left\{ x_{i_{j}}, f(\kappa_{i_{1},\mu_{i_{j}},\mu_{i_{j}},\dots,\mu_{i_{j}}) + \alpha_{i_{j}} \cdot (1 - f(\kappa_{i_{j},\mu_{i_{j}},\mu_{i_{j}},\dots,\mu_{i_{j}}) - \beta_{i_{j}} \cdot f(\kappa_{i_{j},\nu_{i_{j}},\nu_{i_{j}},\dots,\nu_{i_{j}}) \right\} \beta_{i_{j}} \in f(\kappa_{i_{j}},\nu_{i_{j}},\nu_{i_{j}},\dots,\nu_{i_{j}}) \left\} x_{i_{j}} \in X \right\}.$$
(20)

(ii) For the optimistic condition with restrictions:

$$\begin{split} & P_{\alpha_{i_j},\beta_{i_j}} \bigotimes_{i=1}^{\infty} A_i \\ &= P_{\alpha_{i_j},\beta_{i_j}} \left[\langle x_{i_j}, f(\kappa_{i_1},\mu_{i_j},\mu_{i_j},\cdots,\mu_{i_g}), f(\kappa_{2},\nu_{1_j},\nu_{2_j},\cdots,\nu_{i_g}) \rangle \right] x_i \in X \\ &= \left[\langle x_{i_1},\max(f(\kappa_{i_1},\mu_{i_j},\mu_{2_j},\cdots,\mu_{i_g}),\alpha_{i_j}, \right) \\ &\min(f(\kappa_{2},\nu_{1_j},\nu_{2_j},\cdots,\nu_{i_g}),\beta_{i_j}) \rangle x_i \in X \\ & f(\kappa_{i_1},\mu_{i_2},\mu_{2_j},\cdots,\mu_{i_g}), x_i \in X \\ \end{split}$$
 (21)

(iii) For the pessimistic condition:

$$\begin{split} H_{a_{i,j}b_{i,j}} & \left\langle \overset{\otimes}{\otimes} \mathbf{A} \right\rangle = H_{a_{i,j}b_{i,j}} \left(\left\{ \mathbf{x}, \mathbf{f} \left(\mathbf{x}, \mathbf{y}, \mathbf{f} (\mathbf{x}_{i,j}, \mathbf{u}_{i,j}, \cdots, \mathbf{u}_{q}), \mathbf{f} \left(\mathbf{x}, \mathbf{y}, \mathbf{y}, \mathbf{y}, \cdots, \mathbf{y}_{q} \right) \right\} \mathbf{x} \in \mathbf{X} \right\} \\ & = \left\{ \left\{ \mathbf{x}, \alpha_{i,j} \cdot \mathbf{f} (\mathbf{x}, \mathbf{u}_{i,j}, \mathbf{u}_{i,j}, \cdots, \mathbf{u}_{q}), \mathbf{f} \left(\mathbf{x}, \mathbf{y}, \mathbf{y}, \mathbf{y}, \cdots, \mathbf{y}_{q} \right) + \right. \\ & \left. \boldsymbol{\beta}_{i,j} \cdot \left\{ \mathbf{l} - \mathbf{f} \left(\mathbf{x}, \mathbf{u}_{i,j}, \mathbf{u}_{i,j}, \cdots, \mathbf{u}_{q} \right), - \mathbf{f} \left(\mathbf{x}, \mathbf{y}, \mathbf{y}, \mathbf{y}, \cdots, \mathbf{y}_{q} \right) \right\} \right\} \\ \end{split}$$

or

$$\begin{aligned} H^{*}_{\alpha_{i},\sigma_{i}}(\overset{\otimes}{\underline{\alpha}}_{i},A) &= H^{*}_{\alpha_{i},\sigma_{i}}\left(\left\{x_{i},f(x_{i},\mu_{i},\mu_{i},\mu_{i},\cdots,\mu_{d}),f(x_{i},\nu_{i},\nu_{i},\nu_{i},\nu_{i},\nu_{d})\right\} x_{i} \in X\right) \\ &= \left\{x_{i},\alpha_{i}, \quad f(x_{i},\mu_{i},\mu_{i},\cdots,\mu_{d}), f(x_{i},\nu_{i},\nu_{i},\cdots,\nu_{d}) + \beta_{i}, \quad (1-\alpha_{i}, \quad f(x_{i},\mu_{i},\mu_{i},\cdots,\mu_{d}), \quad f(x_{i},\nu_{i},\nu_{i},\nu_{i},\cdots,\nu_{d}) + \beta_{i}, \quad (1-\alpha_{i}, \quad f(x_{i},\mu_{i},\mu_{i},\cdots,\mu_{d}), \quad f(x_{i},\nu_{i},\nu_{i},\cdots,\nu_{d})) \\ &= \left\{x_{i},\alpha_{i},\beta$$

(iv) For the pessimistic condition with restrictions:

$$\begin{aligned} & \mathcal{Q}_{\alpha_{-},\beta_{-}}(\underbrace{\delta_{-}}_{\alpha_{-}}A) = \mathcal{Q}_{\alpha_{-},\beta_{-}}\left[\left\langle x_{j}, f(\kappa_{i},\mu_{j},\mu_{j},\dots,\mu_{d}), f(\kappa_{i},\nu_{j},\nu_{2},\dots,\nu_{d})\right\rangle x_{j} \in X \right] \\ & = \left\langle x_{j},\min(f(\kappa_{i},\mu_{j},\mu_{j},\dots,\mu_{d}),\alpha_{-}\right)\max(f(\kappa_{i},\nu_{j},\nu_{2},\dots,\nu_{d}),\beta_{-}) \right\rangle x_{j} \in X \right\} \text{for } \alpha_{-} + \beta_{-} \leq 1. \end{aligned} \tag{24}$$

Definition 4.2. Let $X = \{x_1, x_2, ..., x_m\}$ be the set of the considered alternatives, and let $A = \{A_1, A_2, ..., A_n\}$ be the set of the criteria used for evaluating the alternatives. Let $\alpha_{x_1}, \beta_{x_2} \in [0,1]$ for all $x_j \in X$. Assume

that individual differences in virtue of optimism or pessimism influence outcomes in the decision matrix. The suitability function to determine the degrees to which the alternative x_j satisfies and does not satisfy the decision maker's requirement can be measured as follows:

(i) For the optimistic condition:

$$\begin{split} & \underset{i=1}{\otimes} J_{\alpha_{i},\beta_{i}}(A_{i}) = \underset{i=1}{\otimes} \left\{ \left\langle x_{j}, \mu_{ij} + \alpha_{x_{j}} \cdot \pi_{ij}, \beta_{x_{j}} \cdot \nu_{ij} \right\rangle | x_{j} \in X \right\} \\ & = \left\{ \left\langle x_{j}, f(\kappa_{1}, \mu_{1j} + \alpha_{x_{j}} \cdot \pi_{1j}), \mu_{2j} + \alpha_{x_{j}} \cdot \pi_{2j}, \cdots, \mu_{ij} + \alpha_{x_{j}} \cdot \pi_{ij} \right\rangle, \quad (25) \\ & f(\kappa_{2}, \beta_{x_{j}} \cdot \nu_{1j}), \beta_{x_{j}} \cdot \nu_{2j}, \cdots, \beta_{x_{j}} \cdot \nu_{ij} \right\}$$

or

```
 \hat{\bigotimes}_{i=1}^{0} J_{\alpha_{i_{j}},\beta_{i_{j}}}^{*}(A) = \hat{\bigotimes}_{i=1}^{0} \left\{ \left\langle x_{j}, \mu_{y} + \alpha_{\alpha_{j}} \cdot (1 - \mu_{y} - \beta_{\alpha_{j}} \cdot \nu_{y}), \beta_{\alpha_{j}} \cdot \nu_{y} \right\rangle | x_{j} \in X \right\} 
 = \left\{ \left\langle x_{j}, f(\kappa_{i}, \mu_{j} + \alpha_{\alpha_{j}} \cdot (1 - \mu_{i_{j}} - \beta_{\alpha_{j}} \cdot \nu_{i_{j}}), \mu_{2j} + \alpha_{\alpha_{j}} \cdot (1 - \mu_{2j} - \beta_{\alpha_{j}} \cdot \nu_{2j}), \cdots, \right\} 
 (26)
```

```
\mu_{\scriptscriptstyle nj} + \alpha_{\scriptscriptstyle x_{\scriptscriptstyle j}} \cdot (1 - \mu_{\scriptscriptstyle nj} - \beta_{\scriptscriptstyle x_{\scriptscriptstyle j}} \cdot \nu_{\scriptscriptstyle nj}), f(\kappa_{\scriptscriptstyle 2}, \beta_{\scriptscriptstyle x_{\scriptscriptstyle j}} \cdot \nu_{\scriptscriptstyle 1j}, \beta_{\scriptscriptstyle x_{\scriptscriptstyle j}} \cdot \nu_{\scriptscriptstyle 2j}, \cdots, \beta_{\scriptscriptstyle x_{\scriptscriptstyle j}} \cdot \nu_{\scriptscriptstyle nj}) \Big| x_{\scriptscriptstyle j} \in X \bigg\}.
```

(ii) For the optimistic condition with restrictions:
$$\begin{split} & \underbrace{\hat{\otimes}}_{i=1}^{\hat{\otimes}} P_{\omega_{i}, d_{i}}(A_{i}) = \underbrace{\hat{\otimes}}_{i=1}^{\hat{\otimes}} \left\{ \langle x_{i}, \max(\mu_{i}, \alpha_{i}), \min(\nu_{u}, \beta_{i},) \rangle | x_{i} \in X \right\} \\ &= \left\{ \langle x_{i}, f(x_{i}, \max(\mu_{i}, \alpha_{i}), \max(\mu_{i}, \alpha_{i}), \cdots, \max(\mu_{u}, \alpha_{u})), f(x_{i}, \min(\nu_{i_{j}}, \beta_{i_{i}}), \cdots, \max(\nu_{u_{j}}, \beta_{u_{j}})) \rangle | x_{i} \in X \right\} \quad \text{for } \alpha_{i} + \beta_{i_{i}} \leq 1. \end{split}$$
 $\begin{aligned} & (\textbf{iii) For the pessimistic condition:} \\ & \underbrace{\hat{\otimes}}_{i=1}^{\hat{\otimes}} H_{\alpha_{i_{j}}, \beta_{i_{j}}}(A_{i}) = \underbrace{\hat{\otimes}}_{i=1}^{\hat{\otimes}} \left\{ \left\langle x_{i}, \alpha_{i_{j}} \cdot \mu_{u_{j}}, \nu_{u_{j}} + \beta_{i_{j}} \cdot \pi_{u_{j}} \right\rangle | x_{i} \in X \right\} \\ &= \left\{ \langle x_{i}, f(x_{i}, \alpha_{i_{j}}, -\mu_{i_{j}}, \omega_{i_{j}}), \cdots, \alpha_{i_{j}}, \mu_{u_{j}}), \\ & f(x_{2}, \nu_{i_{j}} + \beta_{i_{j}}, \pi_{i_{j}}), \nu_{2,j} + \beta_{i_{j}}, \pi_{2,j}, \cdots, \nu_{u_{j}} + \beta_{i_{j}}, \pi_{u_{j}} \right\} | x_{i} \in X \right\}, \end{aligned}$

 $\kappa_{2}, \nu_{1j} + \beta_{x_{j}} \cdot \pi_{1j}, \nu_{2j} + \beta_{x_{j}} \cdot \pi_{2j}, \cdots,$

or

 $\sum_{i=1}^{n} H_{\alpha_{i_{1}},\beta_{i_{1}}}^{*}(A_{i}) = \bigotimes_{i=1}^{n} \left\{ \left\langle x_{j}, \alpha_{x_{1}} \cdot \mu_{i_{j}}, v_{i_{j}} + \beta_{x_{1}} \cdot (1 - \alpha_{x_{1}} \cdot \mu_{i_{j}} - v_{i_{j}}) \right\rangle | x_{j} \in X \right\}$

 $= \left\langle \left(x_{j}, f\left(\kappa_{1}, \alpha_{x_{j}}, \mu_{ij}, \alpha_{x_{j}}, \mu_{2j}, \cdots, \alpha_{x_{j}}, \mu_{qj}\right), f\left(\kappa_{2}, \beta_{x_{j}}, \left(1 - \alpha_{x_{j}}, \mu_{ij} - \nu_{1j}\right), \right. \right. \right.$

 $\beta_{x_j} \cdot (1 - \alpha_{x_j} \cdot \mu_{2j} - \nu_{2j}), \cdots, \beta_{x_j} \cdot (1 - \alpha_{x_j} \cdot \mu_{ij} - \nu_{ij})) \Big| x_j \in X \Big|.$

(iv) For the pessimistic condition with restrictions:

$$\begin{split} & & \left\| \sum_{i=0}^{\infty} \mathcal{L}_{\alpha_i,\beta_i} \left(\mathcal{A}_i, \min(\mu_i, \alpha_{-_i}), \max(v_i, \beta_{-_i}) \right) | x_i \in X \right\} \\ &= \left\{ x_i, f(x_i, \min(\mu_i, \alpha_{-_i}), \min(\mu_{i_i}, \alpha_{-_i}), \cdots, \min(\mu_{i_i}, \alpha_{-_i})), f(x_i, \max(v_{i_j}, \beta_{-_i}), \max(v_{i_j}, \beta_{-_i}), \cdots, \max(v_{i_j}, \beta_{-_i})) \right\} \\ & = \left\{ x_i, f(x_i, \min(\mu_i, \alpha_{-_i}), \min(\mu_{i_j}, \alpha_{-_i}), x_i \in X \right\} \quad \text{for } \alpha_i, i \neq \beta_i, \leq 1. \end{split}$$

Based on the simple additive model, the steps for solving a multi-criteria decision making problem can be summed up as follows.

Algorithm (I): for the effect of optimism or pessimism upon overall judgments.

- Step 1: Establish evaluation criteria A_i 's which have been judged relevant in a given decision situation by the decision maker. Denote $A = \{A_1, A_2, ..., A_n\}$.
- Step 2: Develop feasible alternatives x_j 's for achieving the goals or attaining the decision maker's needs and desires. Denote $x = \{x_1, x_2, ..., x_m\}$. Set $\alpha_{x_1}, \beta_{x_1}$

 $\in [0,1]$ for all $x_j \in X$ according to the decision maker's preference information on alternatives.

- Step 3: Evaluate alternatives in terms of criteria on the fuzzy concept "excellence", where the values of criterion functions are expressed by IFSs. Denote $X_{ii} = \{ \langle x_i, \mu_{ii}, \nu_{ii} \rangle \}$.
- Step 4: Acquire the synthetic evaluation, unconsidering optimism or pessimism, of the alternative x_j by employing the averaging operation in (18).
- Step 5: Determine the suitability function of the alternative x_j by employing the optimistic and pessimistic point operators. Use (19) or (20) for the optimistic
- Proceedings of the 11th Joint Conference on Information Sciences (2008) Published by Atlantis Press © the authors

4

condition, (21) for the optimistic condition with restrictions, (22) or (23) for the pessimistic condition, and (24) for the pessimistic condition with restrictions.

- Step 6: Measure the degree of suitability for each alternative by means of the score function.
- Step 7: Rank the preference order of all alternatives according to the degree of suitability. If there exists $j_o \in \{1, 2, \dots, m\}$ such that the score function is largest, then the alternative x_{j_o} is the best choice.

Algorithm (II): for the effect of optimism or pessimism upon individual outcomes.

- Steps 1-3: See Steps 1-3 of Algorithm (I).
- Step 4: Construct the intuitionistic fuzzy decision matrix that is composed of all X_{ii} 's.
- Step 5: Utilize the optimistic point operators, (9), (10), or (11), and pessimistic point operators, (12), (13), or (14), to reconstruct the intuitionistic fuzzy decision matrix.
- Step 6: Determine the suitability function of the alternative x_j by employing the averaging operation. Use (25) or (26) for the optimistic condition, (27) for the optimistic condition with restrictions, (28) or (29) for the pessimistic condition, and (30) for the pessimistic condition with restrictions.

Steps 7-8: See Steps 6-7 of Algorithm (I).

4.2. Illustrative example

Assume that the degrees μ_{ij} of membership and the degrees v_{ij} of nonmembership for alternative $x_j \in X$ with respect to criterion $A_i \in A$ to the fuzzy concept "excellence" are give below:

We measure the degree of suitability of each alternative by employing all of optimistic and pessimistic point operators. Different settings of parameters are adopted, including (i) $\alpha_{x_j} = 0.4$, $\beta_{x_j} = 0.3$; (ii) $\alpha_{x_j} = 0.6$, $\beta_{x_j} = 0.4$; (iii) $\alpha_{x_j} = 0.2$, $\beta_{x_j} = 0.7$, and (iv) $\alpha_{x_j} = \mu_{ij}/(\mu_{ij} + v_{ij})$, $\beta_{x_j} = v_{ij}/(\mu_{ij} + v_{ij})$ for all $x_j \in X$. The resulting Algorithms (I) and (II) analyses are summarized in Tables 1 and 2, respectively.

Tab. 1: The results of Algorithm (I) in the case of $\kappa_1 = \kappa_2 = 1$ in the numerical example.

	Fixed point operator		Variant point operator	
Suitability	$\alpha_{x_{j}} = 0.4$	$\alpha_{x_j} = 0.6$	$\alpha_{x_{j}} = 0.2$	$\alpha_{x_j} = \mu_{ij} / (\mu_{ij} + v_{ij})$
function	$\beta_{x_{j}} = 0.3$	$\beta_{x_j} = 0.4$	$\beta_{x_{j}} = 0.7$	$\beta_{x_j} = v_{ij} / (\mu_{ij} + v_{ij})$
1 (³)	x1: 0.5673	x1: 0.6120	x1: 0.4293	x1: 0.6758
$J_{\alpha_{s_j},\beta_{s_j}}(\bigotimes_{i=1}^{i}A_i)$	x2: 0.4957	x2: 0.5020	x2: 0.3377	x2: 0.5159
	x3: 0.5297	x3: 0.5460	x3: 0.3817	x3: 0.5771
	x4: 0.5023	x4: 0.5313	x4: 0.3450	x4: 0.5561
	x5: 0.4513	x5: 0.4493	x5: 0.2800	x5: 0.4420
	$x_1 \succ x_3 \succ x_4 \succ$	$x_1 \succ x_3 \succ x_4 \succ$	$x_1 \succ x_3 \succ x_4 \succ$	$x_1\succ x_3\succ x_4\succ$
	$x_2 \succ x_5$	$x_2 \succ x_5$	$x_2 \succ x_5$	$x_2 \succ x_5$
$I^* (\overset{3}{\otimes} A)$	x1: 0.6196	x1: 0.6792	x1: 0.4405	x1: 0.7744
$J_{\alpha_{s_j},\beta_{s_j}}(\bigcup_{i=1}^{\infty}A_i)$	x2: 0.5806	x ₂ : 0.6112	x2: 0.3559	x2: 0.6358
	x ₃ : 0.6034	$x_3: 0.6408$	$x_3: 0.3975$	x ₃ : 0.6936
	x4: 0.5742	x4: 0.6237	x4: 0.3604	x4: 0.6635
	x5: 0.5484	x5: 0.5741	x5: 0.3008	x5: 0.5609
	$x_1 \succ x_3 \succ x_2 \succ$	$x_1 \succ x_3 \succ x_4 \succ$	$x_1 \succ x_3 \succ x_4 \succ$	$x_1\succ x_3\succ x_4\succ$
	$x_4 \succ x_5$	$x_2 \succ x_5$	$x_2 \succ x_5$	$x_2 \succ x_5$
3	x1: 0.3100	x1: 0.4133	x1: 0.3100	x1: 0.5402
$P_{\alpha_{s_j},\beta_{s_j}}(\bigotimes_{i=1}^{\infty}A_i)$	x2: 0.2133	x2: 0.2967	x2: 0.2100	x2: 0.3252
	x3: 0.2600	x3: 0.3367	x3: 0.2600	x3: 0.4019
	x4: 0.2133	x4: 0.3433	x4: 0.2133	x4: 0.3901
	x5: 0.1900	x5: 0.2533	x5: 0.1433	x5: 0.2390
	$x_1 \succ x_3 \succ x_2 \sim$	$x_1\succ x_4\succ x_3\succ$	$x_1 \succ x_3 \succ x_4 \succ$	$x_1\succ x_3\succ x_4\succ$
	$x_4 \succ x_5$	$x_2 \succ x_5$	$x_2 \succ x_5$	$x_2 \succ x_5$
H (SA)	x1: -0.0830	x1: -0.0153	x1: -0.3090	x1: 0.0878
$n_{\alpha_{ij},\beta_{ij}}(\bigotimes_{i=1}^{i}n_i)$	x2: -0.1530	x2: -0.0687	x2: -0.3290	x2: -0.0488
	x3: -0.1180	x3: -0.0347	x3: -0.3080	x3: 0.0134
	x4: -0.1507	x4: -0.0840	x4: -0.3540	x4: -0.0492
	x5: -0.1997	x5: -0.1180	x5: -0.3630	x5: -0.1274
	$x_1 \succ x_3 \succ x_4 \succ$	$x_1 \succ x_3 \succ x_2 \succ$	$x_3 \succ x_1 \succ x_2 \succ$	$x_1 \succ x_3 \succ x_2 \succ$
	$x_2 \succ x_5$	$x_4 \succ x_5$	$x_4 \succ x_5$	$x_4 \succ x_5$
H* (3)	x1: -0.1724	x1: -0.0948	x1: -0.5871	x1: 0.0508
$H_{a_{s_j},\beta_{s_j}}(\bigotimes_{i=1}^{\infty}A_i)$	x2: -0.2454	x2: -0.1508	x2: -0.6165	x2: -0.1196
	x3: -0.2122	x3: -0.1184	x3: -0.6011	x3: -0.0452
	x ₄ : -0.2353	x ₄ : -0.1592	x ₄ : -0.6172	x ₄ : -0.1079
	x5: -0.2879	x5: -0.1964	x5: -0.6374	x5: -0.2115
	$x_1\succ x_3\succ x_4\succ$	$x_1\succ x_3\succ x_2\succ$	$x_1 \succ x_3 \succ x_2 \succ$	$x_1 \succ x_3 \succ x_4 \succ$
	$x_2 \succ x_5$	$x_4 \succ x_5$	$x_4\succ x_5$	$x_2 \succ x_5$
	$x_1: 0.1000$	x1: 0.0967	x1: -0.5000	x1: 0.2235
$\mathcal{Q}_{\alpha_{s_j},\beta_{s_j}}(\bigotimes_{i=1}^{\infty}A_i)$	x2: 0.0967	x2: 0.1133	x2: -0.5000	x2: 0.1419
	x3: 0.1000	x3: 0.1233	x3: -0.5000	x3: 0.1886
	$x_4: 0.1000$	$x_4: 0.0700$	x_4 : -0.5000	$x_4: 0.1168$
	x5: 0.0533	x5: 0.0900	x5: -0.5000	x5: 0.0757
	$x_1 \sim x_3 \sim x_4 \succ$	$x_3 \succ x_2 \succ x_1 \succ$	$x_1 \sim x_2 \sim x_3 \sim$	$x_1 \succ x_3 \succ x_2 \succ$
	$x_2 \succ x_5$	$x_5 \succ x_4$	$x_4 \sim x_5$	$x_4 \succ x_5$

Proceedings of the 11th Joint Conference on Information Sciences (2008) Published by Atlantis Press © the authors

5

5. Conclusions

In this study, we consider the influences of optimism and pessimism to develop different decision models and methods for multiple criteria decision making problems in an intuitionistic fuzzy environment. On the basis of the measurement tool estimations defined on IFSs, we utilize optimistic and pessimistic point operators to determine the influences of optimism and pessimism, respectively, and apply to multi-criteria decision analysis. For each point operator, we investigate and discuss several important properties to acquire a thoughtful understanding in concrete meanings of the relevant operations and relations. In addition, we develop an approach to deal with the effects caused by optimism and pessimism, consisting of changes in overall judgments and in separate evaluations of each alternative with respect to each criterion. The corresponding algorithms are provided to relate optimism and pessimism to multi-criteria decision analysis under the intuitionistic fuzzy decision setting.

Tab. 2: The results of Algorithm (II) in the case of $\kappa_1 = \kappa_2 = 1$ in the numerical example.

	Fixed point ope	erator	Variant point operator	
Suitability	$\alpha_{x_j} = 0.4$	$\alpha_{x_j} = 0.6$	$\alpha_{x_j} = 0.2$	$\alpha_{x_i}=\mu_{ij}/(\mu_{ij}+v_{ij})$
function	$\beta_{x_j} = 0.3$	$\beta_{x_j} = 0.4$	$\beta_{x_j}=0.7$	$\beta_{x_j} = v_{ij} / (\mu_{ij} + v_{ij})$
3 0 (A)	x1: 0.5673	x1: 0.6120	x1: 0.4293	x1: 0.6226
$\underset{i=1}{\overset{(i)}{\underset{i=1}{\underset{i=1}{\overset{(i)}{\underset{i=1}{\underset{i=1}{\overset{(i)}{\underset{i=1}{$	x2: 0.4957	x2: 0.5020	x2: 0.3377	x2: 0.4765
	x3: 0.5297	x3: 0.5460	x3: 0.3817	x3: 0.5537
	$x_4: 0.5023$	$x_4: 0.5313$	x ₄ : 0.3450	x ₄ : 0.5326
	x5: 0c.4513	x5: 0.4493	x5: 0.2800	x5: 0.4375
	$x_1 \succ x_3 \succ x_4 \succ$	$x_1 \succ x_2 \succ x_3 \succ$	$x_1 \succ x_3 \succ x_4 \succ$	$x_1 \succ x_3 \succ x_4 \succ$
	$x_2 \succ x_5$	$x_2 \succ x_5$	$x_2 \succ x_3$	$x_2 \succ x_5$
$\hat{\otimes} I^*$ (A)	x1: 0.6196	x1: 0.6792	x1: 0.4405	x1: 0.7042
$\bigcup_{i=1}^{\infty} J_{\alpha_{i_j},\beta_{i_j}}(A_i)$	x2: 0.5806	x2: 0.6112	x2: 0.3559	x2: 0.5684
	x3: 0.6034	x3: 0.6408	x3: 0.3975	x3: 0.6247
	x ₄ : 0.5742	x4: 0.6237	x4: 0.3604	x ₄ : 0.6242
	x5: 0.5484	x5: 0.5741	x5: 0.3008	x5: 0.5450
	$x_1 \succ x_3 \succ x_2 \succ$	$x_1 \succ x_3 \succ x_4 \succ$	$x_1 \succ x_3 \succ x_4 \succ$	$x_1 \succ x_3 \succ x_4 \succ$
	$x_4 \succ x_5$	$x_2 \succ x_5$	$x_2 \succ x_5$	$x_2 \succ x_5$
3 0 0 (4)	x1: 0.3567	x1: 0.4900	x1: 0.3100	x1: 0.5018
$\bigotimes_{i=1}^{\infty} P_{\alpha_{s_j},\beta_{s_j}}(A_i)$	x2: 0.3367	x2: 0.3900	x2: 0.2100	x2: 0.3234
	x3: 0.3500	x3: 0.4000	x3: 0.2600	x3: 0.4221
	x ₄ : 0.2833	x4: 0.3567	x ₄ : 0.2133	x ₄ : 0.3853
	x5: 0.2367	x5: 0.3067	x5: 0.1433	x ₅ : 0.2510
	$x_1 \succ x_3 \succ x_2 \succ$	$x_1 \succ x_3 \succ x_2 \sim$	$x_1 \succ x_3 \succ x_4 \succ$	$x_1 \succ x_3 \succ x_4 \succ$
	$x_4 \succ x_5$	$x_4 \succ x_5$	$x_2 \succ x_3$	$x_2 \succ x_5$
3 © H (A)	x1: -0.0830	x1: -0.0153	x1: -0.3090	x1: 0.0643
$\bigcup_{i=1}^{\infty} \Pi_{\alpha_{s_j},\beta_{s_j}}(A_i)$	x2: -0.1530	x2: -0.0687	x2: -0.3290	x ₂ : -0.0131
	x3: -0.1180	x3: -0.0347	x3: -0.3080	x3: 0.0771
	x4: -0.1507	x4: -0.0840	x4: -0.3540	x4: -0.0354
	x ₅ : -0.1997	x ₅ : -0.1180	x ₅ : -0.3630	x ₅ : -0.0988
	$x_1 \succ x_3 \succ x_4 \succ$	$x_1 \succ x_3 \succ x_2 \succ$	$x_3 \succ x_1 \succ x_2 \succ$	$x_3\succ x_1\succ x_2\succ$
	$x_2 \succ x_5$	$x_4 \succ x_5$	$x_4 \succ x_5$	$x_4 \succ x_5$

$\overset{3}{\otimes} H^*$ (A)	x1: -0.1724	x1: -0.1345	x1: -0.5176	x1: 0.0251
$\bigotimes_{i=1}^{\infty} H_{\alpha_{s_j},\beta_{s_j}}(A_i)$	x ₂ : -0.2454	x ₂ : -0.1919	x ₂ : -0.5446	x ₂ : -0.0745
	x3: -0.2122	x3: -0.1603	x3: -0.5278	x3: 0.0164
	x4: -0.2353	x4: -0.1968	x4: -0.5514	x4: -0.0912
	x5: -0.2879	x ₅ : -0.2356	x5: -0.5688	x ₅ : -0.1778
	$x_1 \succ x_3 \succ x_4 \succ$	$x_1 \succ x_3 \succ x_2 \succ$	$x_1 \succ x_3 \succ x_2 \succ$	$x_1 \succ x_3 \succ x_2 \succ$
	$x_2 \succ x_5$	$x_4 \succ x_8$	$x_4 \succ x_5$	$x_4 \succ x_5$
3	$x_1: 0.0533$	$x_1: 0.0200$	x_1 : -0.5000	x1: 0.1851
$\overset{3}{\underset{i=1}{\otimes}} Q_{\alpha_{i_j},\beta_{i_j}}(A_i)$	$x_1: 0.0533$ $x_2: -0.0267$	$x_1: 0.0200$ $x_2: 0.0200$	x_1 : -0.5000 x_2 : -0.5000	x1: 0.1851 x2: 0.1400
$\mathop{\otimes}\limits_{i=1}^{3} \mathcal{Q}_{\alpha_{e_{j}},\beta_{e_{j}}}(A_{i})$	x1: 0.0533 x2: -0.0267 x3: 0.0100	x1: 0.0200 x2: 0.0200 x3: 0.0600	x1: -0.5000 x2: -0.5000 x3: -0.5000	x1: 0.1851 x2: 0.1400 x3: 0.2087
$\overset{3}{\underset{i=1}{\otimes}}\mathcal{Q}_{\alpha_{i_j},\beta_{i_j}}(A_i)$	x1: 0.0533 x2: -0.0267 x3: 0.0100 x4: 0.0300	x1: 0.0200 x2: 0.0200 x3: 0.0600 x4: 0.0567	x ₁ : -0.5000 x ₂ : -0.5000 x ₃ : -0.5000 x ₄ : -0.5000	x1: 0.1851 x2: 0.1400 x3: 0.2087 x4: 0.1120
$\overset{3}{\underset{i=1}{\otimes}}\mathcal{Q}_{\alpha_{\epsilon_{j}},\beta_{\epsilon_{j}}}(A_{i})$	x1: 0.0533 x2: -0.0267 x3: 0.0100 x4: 0.0300 x5: 0.0067	x1: 0.0200 x2: 0.0200 x3: 0.0600 x4: 0.0567 x5: 0.0367	x1: -0.5000 x2: -0.5000 x3: -0.5000 x4: -0.5000 x5: -0.5000	x1: 0.1851 x2: 0.1400 x3: 0.2087 x4: 0.1120 x5: 0.0876
$\overset{3}{\underset{i=1}{\otimes}}\mathcal{Q}_{\alpha_{\epsilon_{j}},\beta_{\epsilon_{j}}}(A_{i})$	$x_1: 0.0533 x_2: -0.0267 x_3: 0.0100 x_4: 0.0300 x_5: 0.0067 x_1 > x_4 > x_3 > $	$x_1: 0.0200 x_2: 0.0200 x_3: 0.0600 x_4: 0.0567 x_5: 0.0367 x_5: x_4 > x_5 > $	$x_1: -0.5000$ $x_2: -0.5000$ $x_3: -0.5000$ $x_4: -0.5000$ $x_5: -0.5000$ $x_1 \sim x_2 \sim x_3 \sim 0$	$x_1: 0.1851$ $x_2: 0.1400$ $x_3: 0.2087$ $x_4: 0.1120$ $x_5: 0.0876$ $x_3 \succ x_1 \succ x_2 \succ$

6. References

- K.T. Atanassov, "Intuitionistic Fuzzy Sets," *Fuzzy Sets and Systems*, vol. 20, pp. 87-96, 1986.
- [2] K.T. Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications, New York: Physica-Verlag, Heidelberg, 1999.
- [3] K. T. Atanassov, G. Pasi, and R. Yager, "Intuitionistic Fuzzy Interpretations of Multi-criteria Multi-person and Multi-measurement Tool Decision Making," *International Journal* of Systems Science, vol. 36, no. 14, pp. 859-868, 2005.
- [4] D. Dubois, S. Gottwald, P. Hajek, J. Kacprzyk, and H. Prade, "Terminological Difficulties in Fuzzy Set Theory—The Case of "Intuitionistic Fuzzy Sets"," *Fuzzy Sets and Systems*, vol. 156, pp. 485-491, 2005.
- [5] L. Friedman, A. Weinberg, J. Webb, H. Cooper, and S. Bruce, "Skin Cancer Prevention and Early Detection Intentions and Behavior," *American Journal of Preventive Medicine*, vol. 11, pp. 59-65, 1995.
- [6] D.-F. Li, "Multiattribute Decision Making Models and Methods Using Intuitionistic Fuzzy Sets," *Journal of Computer and System Sciences*, vol. 70, no. 1, pp. 73-85, 2005.
- [7] L. Lin, X.-H. Yuan, and Z.-Q. Xia, "Multicriteria Fuzzy Decisionmaking Methods Based on Intuitionistic Fuzzy Sets," *Journal of Computer and Systems Sciences*, vol. 73, no. 1, pp. 84-88, 2007.
- Proceedings of the 11th Joint Conference on Information Sciences (2008) Published by Atlantis Press © the authors

- [8] M. Puri, and D.T. Robinson, "Optimism and Economic Choice," *Journal of Financial Economics*, vol. 86, pp. 71-99, 2007.
- [9] L.J. Sanna, and E.C. Chang, "The Past is not What It Used to be: Optimists' Use of Retroactive Pessimism to Diminish the Setting of Failure," *Journal of Research in Personality*, vol. 37, pp. 388-404, 2003.
- [10]Z. Xu, and R.R. Yager, "Dynamic Intuitionistic Fuzzy Mutli-attribute Decision Making," *International Journal of Approximate Reasoning*, vol. 48, no. 1, pp. 246-262, 2008.

Proceedings of the 11th Joint Conference on Information Sciences (2008) Published by Atlantis Press © the authors 7