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Abstract

A similarity based fuzzy and possibilis-
tic c-means algorithm called SFPCM

is presented in this paper. It is de-
rived from original fuzzy and possibilis-
tic c-means algorithm(FPCM ) which
was proposed by Bezdek. The differ-
ence between the two algorithms is that
the proposed SFPCM algorithm pro-
cesses relational data, and the origi-
nal FPCM algorithm processes propo-
sitional data. Experiments are per-
formed on 22 data sets from the UCI
repository to compare SFPCM with
FPCM. The results show that these
two algorithms can generate similar re-
sults on the same data sets. SFPCM
performs a little better than FPCM
in the sense of classification accuracy,
and it also converges more quickly than
FPCM on these data sets.
Keywords: similarity, fuzzy cluster-

ing

1. Introduction

Clustering as a type of machine
learning methods has been applied

to many theoretical and practical
problems. There are mainly two kinds
of clustering algorithms, one is hard
clustering, the other is fuzzy cluster-
ing. Hard clustering generates crisp
clusters, and fuzzy clustering generates
fuzzy clusters, which don’t have crisp
boundaries. Fuzzy clustering methods
are good at dealing with "might be"
situations in the real world.
There is a series of famous fuzzy
clustering methods, such as fuzzy
c-means(FCM)[9], possibilistic c-
means(PCM)[10], fuzzy-possibilistic
c-means model(FPCM)[7], possi-
bilistic fuzzy c-means clustering
algorithm(PFCM)[8]. There are
also many derived methods. How-
ever, most fuzzy clustering methods
process propositional data, only a
small portion can process relational
data. Relational data are typically
n2 pair-wise similarity or dissimilarity
matrix between all pairs of objects in a
dataset. This kind of fuzzy clustering
algorithms are called relational fuzzy
clustering algorithms. Relational fuzzy
c-means (RFCM) [3], non-Euclidean
RFCM (NERFCM) [4], (Gaussian)
Kernelized Non-Euclidean Relational
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Fuzzy c-Means[11], fuzzy relational
data clustering (FRC) [5], robust
RFCM (R-RFCM) [5], robust NER-
FCM (R-NERFCM)[6],robust-FRC
(R-FRC) [5] and SPCM[2] are some
relational fuzzy clustering algorithms.
They are mostly derived from FCM,
and SPCM is derived from PCM.
The proposed SFPCM is derived from
FPCM and can process relational data.
The initial purpose of the SFPCM
is to cluster a set of terms, to find
which are domain terms and which
are noisy terms. FPCM is a powerful
fuzzy clustering method, we want to
use it to perform this task. Because
only similarity matrix on terms can be
obtained, and FPCM cannot handle
relational data, we need to modify it.
However, we don’t list the experiments
to cluster domain terms by SFPCM in
this paper because of pages limitation.
We just concentrate on experiments on
22 data sets from UCI[12] to compare
FPCM and SFPCM.
The rest of this paper is organized
as follows. Section 2 describes the
proposed SFPCM algorithm; Section
3 shows some experiments on 22 data
sets from the UCI machine learning
repository to compare FPCM and the
proposed SFPCM; Section 4 makes
conclusion and talks about future
research directions.

2. SFPCM algorithm

The original FPCM proposed by
Bezdek[7] is based on distance com-
putation, and the input of the algo-
rithm is propositional data set. We try
to modify FPCM to process relational
data and call the new algorithm SF-
PCM.
SFPCM algorithm is an optimization
problem solved by iterative processes.

The objective function is

Jmax =
n∑

i=1

c∑

j=1

(um
ij + tηij)(sim(xi, cj))2

(1)
where 1 < m < ∞ and 1 < η < ∞.
The whole algorithm is as follows.
Input:(Mn×n,c,m,η,ε)
Where M is similarity matrix on data
set X. X = {x1, x2, x2, . . . , xn}, each
object can be represented by a unit vec-
tor of length n. For example
x1 = (1, 0, 0, . . . , 0)
x2 = (0, 1, 0, . . . , 0)
. . .
xn = (0, . . . , 0, 1)
The entry mij ∈ M is the similarity be-
tween xi and xj , and can also be writ-
ten as sim(xi, xj). c is predefined clus-
ter number. m and η are two fuzzy ex-
ponents. ε is an extreme small positive
number which controls the termination
of the algorithm.
Output: (U,T,V). U is membership
matrix, T is possibility matrix, and V
is cluster center matrix.
Initialization: We first select c ob-
jects randomly from X as initial cluster
centers, we call them seeds. seedsj ∈
X, j = 1 . . . c is the jth initial cluster
center. And the initial u0

ij , t0ij and v0
j

are computed as:

u0
ij = (

c∑

k=1

(
sim(xi, seedsk)
sim(xi, seedsj)

)
2

m−1 )−1

= (
c∑

k=1

(
mi,seedsk

mi,seedsj

)
2

m−1 )−1 (2)

t0ij = (
n∑

k=1

(
sim(xk, seedsj)
sim(xi, seedsj)

)
2

η−1 )−1

= (
n∑

k=1

(
mk,seedsj

mi,seedsj

)
2

η−1 )−1 (3)

if mi,seedsj
= 1, which means xi is the

jth initial cluster center, uij and tij will
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be corrected to 1.

v0
j =

∑n
k=1(u

m
kj + tηkj) × xk∑n

k=1(u
m
kj + tηkj)

(4)

Iteration: In the following iterations,
U,V,T are updated.

uij = (
c∑

k=1

(
sim(xi, ck)
sim(xi, cj)

)
2

m−1 )−1 (5)

tij = (
n∑

k=1

(
sim(xk, cj)
sim(xi, cj)

)
2

η−1 )−1 (6)

vj =

∑n
k=1(u

m
kj + tηkj)xk∑n

k=1(u
m
kj + tηkj)

(7)

In the above equations, 1 ≤ i ≤ n,
1 ≤ j ≤ c. In equation5 and equation6
, sim(xi, cj) is defined as:

sim(xi, cj) =

∑n
k=1(u

m
kj + tηkj) × mi,k∑n

k=1(u
m
kj + tηkj)

(8)
mil is the similarity between xi and
xl. ulj is the membership degree of xl

to cj and tlj is the possibility of xl to
cj .
When |V − Vold| < ε, the iteration
process terminates.
SFPCM satisfies the constraints:

c∑

j=1

uij = 1 i = 1, . . . , n (9)

and
n∑

i=1

tij = 1 j = 1, . . . , c (10)

3. Experiments

We have carried out experiments on
22 data sets selected from UCI[12]
to compare SFPCM and FPCM. If
the original data set has separate
training and testing sets, the training
set is used, otherwise, the whole set

is used. Besides, if the original data
set is categorical, we change it to
numerical data set by replacing each
category of a categorical attribute
with a number. You can refer to the
UCI repository website[12] for more
detailed information about the data
sets we used.
The similarity between two objects is
computed by the reciprocal of their
Euclidean distance. And the similari-
ties are normalized. Because SFPCM
is a derivation of FPCM, it should
generate similar results with FPCM
on same data sets. We use same initial
clusters for both algorithms, and ε is
set to be 0.001 for both algorithms.
We use the following method to com-
pute the relatedness of the two fuzzy
partitions(resultant clusters) obtained
by FPCM and SFPCM.
For each pair of objects (o1, o2) of a
data set O, there are four cases in the
two partitions.
(1) o1 and o2 belong to the same
cluster in the first partition, they also
belong the same cluster in the second
partition.
(2) o1 and o2 belong to the same
cluster in the first partition, but they
belong to different clusters in the
second partition.
(3) o1 and o2 belong to different
clusters in the first partition, and
they belong to the same cluster in the
second partition.
(4) o1 and o2 belong to different
clusters in the first partition, and they
also belong to different clusters in the
second partition.
Then for all pairs of objects in O, we
count the number of each case, which
are n1,n2,n3 and n4. The relatedness
or similarity of the two partitions is
computed as:
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R =
n1 + n4

n1 + n2 + n3 + n4
(11)

A higher R means better similarity.
The results are shown in Table1, the
second column is R value, the third and
fourth columns are classification accu-
racy of FPCM and SFPCM respec-
tively. In order to compute accuracy,
we first defuzzy the resultant fuzzy par-
tition to a crisp partition. If an object
has the maximal membership degree
and possibility value for a cluster than
other clusters, then this object will be
assigned to the cluster. For example,
if an object with maximal membership
for cluster 1, but maximal possibility
value for cluster 2, then it won’t be as-
signed to any cluster. Then we map the
resultant clusters to real classes of the
data set. If most objects of a cluster
are from Class i, then this cluster will
be labeled to Class i. Finally, classifi-
cation accuracy can be computed.
From Table1, we can see that, the two

algorithms obtain same accuracy for
iris and lung. They obtain same parti-
tion for iris, because the R value is one.
For data sets balance, australian and
vehicleaa, FPCM’s accuracy is higher
than SFPCM’s. And for other sev-
enteen data sets, the accuracy of SF-
PCM is higher, which are labeled in
bold type in Table1. Among these data
sets, there are six data sets on which
the accuracy of SFPCM exceeds 10%
than FPCM’s. The most prominent
one is thyroid, the accuracy of SFPCM
is greater than FPCM’s by 31.16%
Table2 shows that SFPCM converges

more quickly than FPCM nearly on
all data sets except hepatitis and lung.
The reason may lie in that for SF-
PCM, |V − Vold| is only affected by
U and T, but for FPCM, |V − Vold|
is affected by U,T and X. Sometimes,
even U and T change little, the abso-

Data set R FPCM SFPCM
iris 1 0.96 0.96

glass 0.8284 0.4346 0.5981
soybean 0.9722 0.9574 1

waveform 0.7924 0.5518 0.6690
breast 0.8281 0.6738 0.8283

cleveland 0.9267 0.4698 0.5570
pima 0.8548 0.5560 0.5638

hepatitis 0.8188 0.5430 0.6490
balance 0.8680 0.6352 0.6176

ionosphere 0.8249 0.5812 0.6439
bupa 0.8531 0.4363 0.6237

thyroid 0.6982 0.5442 0.8558
wine 0.9763 0.8989 0.9157
hayes 0.6073 0.3788 0.4394
lenses 0.6196 0.6667 0.7083
lung 0.6553 0.6296 0.6296

spambase 0.6478 0.5082 0.5838
australian 0.4942 0.7768 0.5551

heart 0.7252 0.7074 0.7667
satimage 0.9398 0.7024 0.6859
segment 0.9608 0.6229 0.6433
vehicleaa 0.8277 0.4043 0.3723

Table 1: Relatedness and Accuracy
with ε = 10−3

lute value between V and Vold is big-
ger than the threshold ε. We then do
experiments using a bigger ε = 0.01
to see its effect on accuracy and iter-
ation times. We find that the iteration
times of FPCM reduce remarkably but
are still bigger than SFPCM’s. For ex-
ample, on breast, the iteration times of
FPCM is 37 and SFPCM’s is 7; and
on bupa, their iteration times are 35
and 7 respectively. But the accuracy
of SFPCM on breast is 0.8283, and
better than FPCM’s accuracy which is
0.6624. And on bupa, FPCM’s accu-
racy is 0.4406 and SFPCM’s accuracy
is 0.6237. SFPCM doesn’t lead to less
classification accuracy in spite of much
fewer iteration times.
We also use Gaussian kernel function
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data set FPCM SFPCM
iris 8 5

glass 39 17
soybean 13 7

waveform 14 2
breast 100 7

cleveland 48 31
pima 10 3

hepatitis 12 16
balance 50 5

ionosphere 7 5
bupa 44 5

thyroid 36 16
wine 9 5
hayes 61 9
lenses 47 30
lung 19 20

spambase 9 2
australian 18 2

heart 37 8
satimage 19 6
segment 20 9
vehicleaa 25 21

Table 2: Iteration times with ε = 10−3

to compute similarity matrix for data
sets. Accuracy and iteration times of
SFPCM are shown in Table3. We also
label better accuracy and smaller iter-
ation times in comparison with FPCM
in bold type. It can be seen that SF-
PCM’s accuracy for twelve data sets re-
duce, three unchange, and seven other
data sets improved. However, the big
and small relationship between the ac-
curacy of FPCM and SFPCM doesn’t
change much from Table1.

4. Conclusion and future work

In this paper, we derive an algorithm
called SFPCM from FPCM, which can
process relational data. We do experi-
ments on 22 data sets from UCI reposi-
tory to test SFPCM. For nearly all data

Data set Accuracy Iteration
iris 0.9467 5

glass 0.4393 22
soybean 1 3

waveform 0.7268 2
breast 0.4835 14

cleveland 0.5805 11
pima 0.5911 3

hepatitis 0.6026 7
balance 0.6128 3

ionosphere 0.6610 4
bupa 0.4206 9

thyroid 0.5721 8
wine 0.9231 5
hayes 0.4015 31
lenses 0.6667 8
lung 0.6296 6

spambase 0.4184 1
australian 0.5551 1

heart 0.6741 14
satimage 0.7039 5
segment 0.6649 7
vehicleaa 0.3085 25

Table 3: Results for SFPCM using
Gaussian Kernel Function and ε =
10−3

sets, SFPCM converges more quickly
than FPCM. But fewer iteration times
don’t lead to worse accuracy for SF-
PCM. The quick convergence is an ad-
vantage of SFPCM and is especially
useful for processing large data sets in
practical applications.
However, there are still many problems
to explore in the future. For example,
the performance of SFPCM should be
tested on more data sets with different
choices of input parameters. We also
need to analyze which type of data is
suited to use SFPCM. The impact of
different similarity measures on clus-
tering result of SFPCM should also be
studied.
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