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Abstract 

We present here a logical progression of 
probability and risk analysis for adventi-
tious events, events whose probability is 
not well measurably different from zero[1] 
(WMDZ). We will show that such analy-
ses culminate in maximum possible risk[2] 
(MPR) and, further, that MPR is equiva-
lent to a boundary condition for classic 
sensitivity analysis when applied to 
events which are not WMDZ. Further, we 
shall show that use of counter-factual 
probabilities provides a good estimate of 
these boundary conditions. 
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1. Background 

Few risk-analysis techniques perform 
well for events or outcomes whose prob-
ability is very near zero. Such events are 
adventitious, having happened very rarely 
or having never happened. Examples in-
clude the eruption of Mt. St. Helens, and 
release of Bacillus anthracis spores from 
a research laboratory. Because no or in-
sufficient data exist to well-characterize 
these events, the classic estimates of 
probability lack sufficient basis. The ob-

vious assumption of P(event)=1/N for 
some very large but arbitrary N presuma-
bly allows classic risk analysis, but such 
unfounded assumptions are not appropri-
ate and ignore the legitimate advances in 
decision sciences. 

2. What’s wrong with classical prob-
ability analysis for adventitious 
events? 

Classic risk analysis starts with the for-
mal mathematical definition of risk: 

 

! 

Risk(event) = P(event) " Loss(event)
  (1) 
where loss is assigned in dollars, or lives, 
or lost-time, or any other measure of in-
terest. Scenarios are compared by varying 
the probability inputs, the inputs to the 
Loss function, or even the events them-
selves. Comparison of disparate events, 
such as terrorist versus accidental release 
of pathogenic materials is possible due to 
the consistent definition of risk. The con-
ventional scenarios include known confi-
dence limits around the inputs, up to a 
“worst case” which might be defined sta-
tistically, e.g. low p-value. Varying the 
input assumptions is frequently referred 
to as sensitivity analysis. 



This is the classic structure, sometimes 
accompanied by the assertion that the loss 
estimates are valid only in the context of 
comparisons between scenarios - that the 
differences between the various computa-
tions are indicative of real differences be-
tween scenarios. For scenarios which in-
clude adventitious events or events whose 
probabilities are not WMDZ, the classic 
approach is fundamentally flawed due to 
an inappropriate mixing of rigor with 
subjective “data”. 

2.1. How did we come to this? 

Mathematically, risk is the product of 
probability and loss. Loss assumes a 
threat - an event which causes harm, 
quantifiable in dollars, cases, lives, etc.  
In the non-mathematical arena risk falls 
into two subjective categories, segregated 
by presence of data:  

Credible  ~ data- or evidence-based belief 
that a particular threat can happen and, 
without countermeasures or intervention, 
will cause harm (loss). Example: power 
failure in a lab. 

Plausible (or Conceivable) ~ not data- or 
direct-evidence-based, i.e. may have 
never happened, but following from a de-
fensible, logical extension of facts. Ex-
ample: earthquake in a location where 
none has occurred in recorded history but 
which is near a known fault line. For the 
purposes here, there is no distinction be-
tween plausible, conceivable, imaginable, 
or other terms which imply our belief that 
an event could occur but has not done so 
with measurable probability. 

Credible and plausible threats extend 
naturally to credible and plausible prob-
abilities and risks. For credible events, 
the probability can be legitimately esti-
mated based on the data. Such computa-
tions are routinely performed, accurately 

and precisely, in the actuarial arena for a 
wide range of insured threats, and in the 
public-utility and public-health arenas for 
a range of undesirable events such as 
power outages and disease outbreaks. 

Sequential events, or sub-events, which 
together define an “EVENT” can be 
evaluated separately and combined. For 
dependent events:  

! 

P(EVENT) = P(event1) " P(event
i
| event

i#1)
i= 2

n

$ (2) 

where EVENT is defined by the simulta-
neous or sequential occurrence of events 
1 through n (event1 – eventn, inclusive). 

For independent events, the probability of 
credible events may be computed as:
 

! 

P(EVENT) = P(event
i
)

i=1

n

"  (3) 

where events 1,2,3... are independent and 
together define the event of interest. For 
example, for power failure to cause 
community infection (and assuming in-
dependence for this discussion only): 

P(infection in the community) =  
P(power failure at the lab) x 
P(failure of fail-safe systems) x 
P(an infectious agent in use) x 
P(infectious exposure level in com-
munity) x 
P(disease, given infection) x 
P(mortality, given disease) 

 

Each of the components can be estimated 
from historical data. So, credible events 
give rise to this definition of probability: 

Probable ~ Measurably probable, meas-
urably different from zero probability 

This definition of probable does not mean 
likely, which might be inferred to be a 
probability greater than some threshold 



such as 50% or higher. The definition of 
probable extends naturally to risk, assum-
ing that a loss function can be well esti-
mated, such as the cost of treating a case, 
or assigned, such as Loss(death)=1 and 
Loss(survival)=0. Either way, the risk is 
measurable. 

2.2. Acceptable Standard 

Once a measurable risk is computed, the 
final step toward decision making is 
comparing that risk with an acceptable 
standard. Establishment of a standard is a 
subject of substantial debate, but for the 
purposes here, we assume there is such a 
value, δ, which is presumed to be small. 
Hence the decision test is: 

 

! 

Risk(EVENT)? < "   

For public health issues where the out-
come of an event is mortality, a loss func-
tion of 1 is commonly assigned, in which 
case the above test reduces to: 

 

! 

P(EVENT)? < "   

where δ is the probability of some event 
that we normally accept, such as the 
probability of being fatally struck by 
lightning. A key point is that δ > 0[3]. 

2.3. Adventitious events 

For adventitious events, little or no basis 
for probability estimates exists; hence the 
classic structure is not appropriate. In-
stead, we must augment classic theory 
with our last definition: 

Possible ~ credible or plausible, but with 
probability NOT well measurably differ-
ent from zero (not WMDZ), except: 

The upper bound for mathematically pos-
sible is 100% possibility, in which case, 
by the strong principle of probability-

possibility consistency[4], the probability 
becomes measurable and classic probabil-
ity analysis is appropriate. The definition 
of possible extends directly from prob-
ability to risk, assuming a finite loss func-
tion. 

2.4. Analyzing “possible” risks 

Events which are probable must be sepa-
rated from events which are merely pos-
sible. Equation 3 can be re-written: 

! 

P(EVENT) = P(event
i
)

1

k

" # P(event
i
)

k+1

n

" (4) 

 

where events 1, 2, ...k are supported by 
data and events k+1, k+2, ...n are not. The 
former group includes the k events with 
credible probabilities such as power out-
ages, infection rates given exposure, mor-
tality rates given infection. The other n-k 
events arise from imagination, such as: 
“all escaped spores from an accidental lab 
spill are carried by the wind in the same 
direction without significant dispersal”. 

2.5. Sensitivity Analysis and Worst 
Case 

Classic sensitivity analysis would lead us 
to vary all the terms on the right side of 
Equation 3. Dependent on whether an 
eventi is desirably high or low, lower and 
upper confidence limits for each term 
represent “worst case”. The confidence 
limits for events 1 through k might be 
based on known 95% confidence, or 
99%, or 99.9999% or more, up to six-
sigma for some situations. However, for 
terms k+1 through n, there are no data-
based upper confidence bands. Hence, 
such an approach is not appropriate due 
to the mixing of rigorous statistical esti-
mates with unsupported, subjective val-
ues. The sum A+B, where A is accurate 
and precise but B is assumed, does not 
magically achieve the precision of A; but, 



rather, the sum drops to the unknown 
status of B. 

2.6. Maximum Possible Risk 

Instead of unsupported confidence limits 
for adventitious events, we must intro-
duce counterfactual probabilities, which, 
in this case, represent the worst possible 
“worst case”, or the maximum possible 
risk (MPR). Our counterfactual assump-
tion is that the probability of each adven-
titious event is 1.0; that is, we shall as-
sume, counterfactually, that they all oc-
cur.  

Equation 4 can then be re-written: 

 

! 

P(EVENT _C) = P(event
i
)

1

k

" # (1.0)
k+1

n

"
 (5) 
 

where EVENT_C is EVENT under the 
counterfactual assumptions. This can be 
re-written 

 

! 

P(EVENT _C) = P(event
i
)

1

k

" (6) 

where events 1, 2, ...k are supported by 
data. We can now legitimately compute a 
value for the test 

! 

P(EVENT _C)? < "  

which is equivalent to:  

! 

P(event
i
)

1

k

" ? < #  

Since all events have probability less than 
or equal to one and the counterfactual 
events have probability equal to one, we 
have: 

! 

P(event
i
)

k+1

n

" #1.0 = P(eventC
i
)

k+1

n

"  

and 

! 

P(event
i
)

k+1

n

" # P(eventC
i
)

k+1

n

" (7) 

 

where eventCi’s, i=k+1 to n are the events 
with counterfactual probabilities. Multi-
plying both sides by the non-negative 
value ∏i=1 to k[P(eventi)], we have 

! 

P(event
i
) "

1

k

# P(event
i
)

k+1

n

# $ P(event
i
) "

1

k

# P(eventC
i
)

k+1

n

# (8) 

 

which is simply  

! 

P(EVENT) " P(EVENT _C)  

so we have the ordered relationship:
 

! 

P(EVENT) " P(EVENT _C)? <#
 (9) 

So if  

! 

P(EVENT _C) < "  (9) 
 

which can be tested with data from well-
characterized history, then 

! 

P(EVENT) < "   (10) 
 
The real event of interest, complete with 
adventitious elements, has a lower prob-
ability than the acceptable standard, δ, 
even though we can’t estimate the adven-
titious probabilities. The standard, δ, is an 
upper bound for P(EVENT). 
 
Once again assuming a Loss function as-
signed to 1.0, the upper bound of the 
probability extends to the risk: 

! 

Risk(EVENT) = P(EVENT) "1.0 = P(EVENT) < #

 (11) 



3. Decision Making 

Selection of δ for the test must be made a 
priori and without consideration of the 
EVENT. This is a key requirement for the 
intellectual ethics of the analysis. The se-
lection of δ is subjective – what can we 
“live with”? In addition, we must estab-
lish a Loss function. For event=mortality, 
many public health analyses assign the 
Loss function: 

L(EVENT) =  1, if the event occurs 
 0, otherwise. 

Using this loss function essentially 
equates probability and risk. This blend-
ing of the terms has obvious health-
communication advantages and bypasses 
the sticky question of estimating the 
value of a human life. 

The mortality rate for influenza and 
pneumonia (combined) for 2006 in the 
Unites States was 18.8 per 100,000[5]. 
This translates to a probability of 
0.000188; using a Loss function value of 
1.0, the flu and pneumonia risk with 
which Americans live everyday is  

Risk(mortality from flu or pneumonia) = 
0.000188 

For the period 1990-2003, the average 
annual U.S. human death count from 
lightning was 54[6]. During the same pe-
riod the U.S. population[7] averaged ap-
proximately 270,000,000; again using 
Loss(death)=1.0, the risk is: 

Risk(being killed by lightning) = 
54/270,000,000 = 0.0000002 

The most dangerous cities in the U.S., as 
defined by murder rates, number about 50 
murders per year per 100,000 popula-
tion[8]. Again, using Loss(death)=1.0, 
some city dwellers accept: 

Risk(being murdered) = 50/100,000 = 
0.0005 

Selecting δ in the range of these known 
and accepted (begrudgingly or not) prob-
abilities is reasonable and prudent. Simi-
larly, selecting an arbitrarily higher δ, say 
corresponding to some high percentile on 
a Normal distribution might also be con-
sidered reasonable and prudent. For ex-
ample, the traditional p-value correspond-
ing to six-sigma for the standard Normal 
curve is 0.000000006. However, such a 
standard might impose impossible restric-
tions - well beyond what we accept every 
time we get into a car. A conscientious 
practitioner of risk analysis should not 
assign a risk limit which cannot possibly 
be met. Setting unrealistically low 
thresholds of acceptability inevitable in-
creases the risk of other hazards by di-
verting attention and resources away 
from them.  In extreme cases it can actu-
ally increase total risk borne by a com-
munity. 

3.1. What if P(EVENT) is not <  δ. 

If, on the initial analysis, the risk of an 
EVENT is greater than the reasonable 
and prudent δ, then the EVENT repre-
sents unreasonable risk. In order to con-
tinue with the associated project or ac-
tion, we must lower the risk. To do so is 
not a mathematical or analytical exercise; 
rather we must change something in the 
project.  

For example, in the lab example above, 
we might adopt a policy that infectious 
agents not be used during times of likely 
thunderstorms and therefore likely power 
outages. It would then be appropriate to 
compute a new P(EVENT) using the 
lower value of P(power outage|infectious 
agent in use) instead of the product of the 
two independent terms, because the con-
ditional event is less likely to occur.  



3.2. A comment on the time variable 

The values which have been cited for 
standards are annual probabilities – ulti-
mately representing the risk of the speci-
fied event during one year. An additional 
analysis required for evaluation of many 
real EVENTS is consideration of multiple 
years. Selecting an appropriate δ for mul-
tiple years or conducting a post facto 
multi-year analysis is beyond the scope of 
this presentation, but is necessary and is 
left to the practitioner. 

3.3. A note on the Loss function 

Generalizing Equation 11 to loss func-
tions other than 1.0 or going back to the 
definition of risk, if the Loss function has 
value L for a particular EVENT, then 

! 

Risk(EVENT) = P(EVENT) " Loss(EVENT) 

so the test becomes  

! 

P(EVENT) " L ? < #  

which for positive values of Loss be-
comes 

! 

Risk(EVENT) ? < " /L . 

If the risk is not less than δ/L, which 
might be very much lower than δ, then 
different countermeasures, policies, pro-
tocols, or interventions must be deter-
mined to reduce one or more of the 
P(eventi)’s and therefore P(EVENT) and 
Risk(EVENT). 

4. Summary 

We have presented a logical progression 
from classic probability and risk analysis 
to MPR analysis. Though the former is 
appropriate for well-characterized, prob-
able events, many real world events in-

clude adventitious components, whose 
probability is not well measurably differ-
ent from zero. For those, classic risk 
analysis breaks down; an alternate ap-
proach is required and has been pre-
sented. The MPR approach more accu-
rately provides sensitivity analyses, 
“worst case” analyses, and a mathemati-
cally-supported decision-making ap-
proach. When counterfactual probabilities 
are included, MPR is a boundary condi-
tion for classic sensitivity analysis. 
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