
Multilevel Based Global Routing
Algorithm for Hierarchical FPGA*

Zhu Limin, Bian Jinan, Zhou Qiang, Hong Xianlong
Department of Computer Science & Technology, Tsinghua University

Abstract

This paper presents an efficient global
routing algorithm for a hierarchical inter-
connection architecture of FPGA. What is
different from the traditional FPGA rout-
ing algorithm is that the proposed algo-
rithm takes advantage of the hierarchical
structure of this particular FPGA. We use
a hierarchical tree as the routing resource
representation of the corresponding inter-
connection architecture. In the routing
phase, the global routing problem for
each net is represented as a sub-tree de-
termination problem. As soon as the loca-
tion of each Logic Block is fixed, we can
use a tree-growth-like algorithm to de-
termine the sub-tree on the corresponding
routing resource tree. The algorithm is
very efficient and fast since the sub-tree
is determined once we determined the po-
sition of each Logic Block. On the other
hand, we can use this method to evaluate
the routability of the corresponding
placement results.

Keywords: FPGA, Hierarchical Archi-
tecture, Routability, Global Routing Al-
gorithm

1. INTRODUCTION

The Field Programmable Gate Array
(FPGA) is widely used for ASIC design
and system prototyping. It reduces the
design cost and implementation time. The
traditional symmetrical array based
FPGA [5] consists of Configurable Logic

Block (CLB), Switch Box, Routing Seg-
ments and I/O blocks. Switch Box can be
configured to connect Routing Segments
into networks. I/O blocks provide the in-
terface between the input/output pins and
internal signal lines.

The key advantage of FPGA over the
traditional gate array devices is the pro-
grammability of its logic function. As a
result, the architecture of FPGA is far
more complex. The logic and routing re-
sources are limited in FPGA. Compared
to traditional full-custom devices, FPGA
suffers from low density and low per-
formance. A signal in an FPGA connec-
tion path must pass through a lot of
Switch Boxes. Since Switch Boxes take
up extra chip area, an FPGA has lower
density than conventional full-custom de-
vices. Generally, the delay of the Switch
Box is much larger than that of the wire.
The delay of the signal path also in-
creases due to the Switch Box inter-
connection.

As the development of the deep-micron
technology, now we can build more tran-
sistors into a single chip. As a result, the
designs become more and more compli-
cated. The need to model the design
quickly and efficiently becomes more and
more important. On the other hand, the
performance of an FPGA can be in-
creased by reducing the number of
Switch Boxes along a signal path. In ad-
dition, the density of an FPGA can be in-
creased by reducing the total number of
pass devices in a structure [1]. Based on
these considerations, in this paper, we

*Supported by National Natural Science Foundation of
China (NSFC) 90607001 and 607201066003

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 1

will describe the Hierarchical FPGA
(HFPGA) interconnection structure pre-
sented in [1]. It has all of the previous
advantage over the traditional Island-
based FPGA. As a matter of convenience,
we reproduced it as shown in Figure 1.
This hierarchical structure of FPGA can
dramatically reduce the amount of Switch
Boxes along signal paths [1]. We can
model a complicated design more easily
and quickly on this architecture. In this
paper, we will present a multilevel based
global routing algorithm that takes advan-
tage of the special characteristics of this
hierarchical architecture. As the experi-
mental result shows, the proposed algo-
rithm is very efficient and fast, compared
to the improved Maze routing algorithm
in VPR.

This paper is organized as follows. In
section II, some general routing algo-
rithms for FPGA is discussed. Section III
describes the new HFPGA architecture
and its routing resource representation.
The multilevel tree based global routing
algorithm is presented in section IV. The
experimental results and discussions are
given in section V. Section VI concludes
this paper.

2. FPGA ROUTING ALGORITHM
SURVAY

Over the years, many algorithms have
been proposed to perform routing on the
FPGA. As the FPGA global routing prob-
lem is very similar to that of traditional
metal- programmable gate-array (MPGA)
or standard cell designs, many ASIC
global routing techniques may be used for
FPGA global routing. The early FPGA
router CGE [9] and SEGA [10] adopted
the global router LocusRoute [11] for
standard cell designs. The main goal of
CGE is to distribute the connections
among the channels so that the maximum
channel density is minimized. But by far,
the most famous FPGA global routing

algorithm, like the one used in Pathfinder
[8] and VPR [3], is based on the negotia-
tion-based global router [12] for standard
cell designs.

Pathfinder uses an iterative algorithm
that converges to a solution in which all
signals are routed while achieving close
to the optimal performance allowed by
the placement. The router in VPR is
based on the Pathfinder negotiated con-
gestion algorithm. By gradually increas-
ing the cost of oversubscribed routing re-
sources, the algorithm forces nets with
alternative routes to avoid using oversub-
scribed resources, leaving only the net
that most needs a given resource behind.

In order to avoid the possible mismatch
between global and detailed routing due
to the difficulty of approximating all
available routing resource in FPGA de-
signs, several FPGA routers combine
global and detailed routing in one step
and produce good results. One of them is
Tracer [4]. It use a simulated evolution
based optimization technique to itera-
tively rip-up and reroute the nets violat-
ing the routing resource or timing con-
straints.

Almost all of these algorithms are
based on the directed acyclic graph,
which is the representation of routing re-
source for symmetric array based FPGA.
These algorithms are all applied to the
traditional island-style architecture. As
the scale of the routing problem becomes
bigger, the time complexity is becoming
extremely larger. Sometimes we need an
efficient method to quickly model a de-
sign and get a viable solution. In this pa-
per, we present a multilevel tree based
global routing algorithm which uses a hi-
erarchical tree representation for the rout-
ing resource of hierarchical architecture
of HFPGA. The experimental results
show that this algorithm is very efficient
and fast compared to the traditional
FPGA routing algorithm since the algo-

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 2

rithm is deterministic once the placement
of the circuit is determined.

Fig. 1: The structure of an HFPGA

3. Hierarchical FPGA Architecture

3.1. Architecture Overview

The logic blocks in an HFPGA are
connected in a hierarchical fashion. First,
k logic blocks are connected to form a
cluster with a switch box. Then k clusters
are recursively connected together as a
super-cluster. The structure of an HFPGA
can be represented as a k-way tree. In [1],
we know that k=4 is the optimal choice as
for the density and performance of an
HFPGA. In this paper, we will use k=4 as
our default k value.

Figure 2 illustrate the corresponding 4-
way tree of the hierarchical structure in
figure 1. A leaf vertex of the tree repre-
sents the Logic Block and the other verti-
ces correspond to the Switch Boxes, each
of which has 4 children in this case. An
edge in the tree represents a channel
which consists of wire tracks.

In [2], we know that a connection path
between two Logic Blocks in an HFPGA
generally passes fewer switches than a
path in the conventional FPGA. From [1],
we see that the total number of switches

in HFPGA is fewer compared with the
island-style FPGA if they have same
routability. The HFPGA architecture is
kind of superior from the stand point of
the routability and performance.

Fig. 2: The tree representation of an HFPGA

3.2. Routing Resource Tree of
HFPGA

In order to model all the available rout-
ing resource in an FPGA, a routing re-
source graph is created as an abstract data
representation to be used by the global
and detailed routers in the conventional
FPGA. In order to take advantage of spe-
cial characteristics of the HFPGA, we
model the routing resource of an HFPGA
as a complete k-way tree. We will see
that our efficient global routing algorithm
is built on this tree. In this section, we
will describe the building of the resource
tree in detail.

3.3. Building of the Routing Resource

Tree

As we mentioned earlier, the overall
HFPGA architecture can be represented
as a k-way complete tree. The leaf verti-
ces are the Logic blocks while the other
vertices are the Switch Boxes. Each edge
represents the routing channel between
Switch Boxes and Logic blocks (or
Switch Boxes). The capacity of each edge

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 3

represents the number of tracks in the
corresponding routing channel. We can
recursively build the routing resource tree
using the logic blocks information and
switch boxes information. After building
the tree, we can use a quaternary number
to uniquely identify the location of a logic
block in a 4-way tree. Now we are ready
to study various routing algorithm on the
tree.

Fig. 4: the structure of a tree for a net

4. The proposed algorithm

From above discussion, we know that
the interconnection structure in the
HFPGA is very different from the tradi-
tional symmetric array based FPGA. The
traditional graph based routing algorithms
ignore the architecture characteristics of
the HFPGA. In this paper, an efficient
multi-level tree based global routing algo-
rithm is proposed. As we know, the hier-
archical interconnection architecture of
the HFPGA corresponds to a k-way com-
plete tree. The proposed algorithm takes
advantage of the characteristic of the cor-
responding k-way complete tree to route
all of the nets. This section describes the
detailed implementation of this algorithm.

4.1. Constructing of Netlist Trees

During the partition and placement

phases of FPGA design, the locations of
the Logic Blocks in the netlist are fixed
on the k-way routing resource tree. We
all know that the netlist of the circuit in
FPGA design is a Super-Graph where
vertices represent the Logic blocks and
super-edges represent the nets. A net is
composed of multiple terminals which are
electrically equal. Every net can be seen
as a subtree mapped into the big routing
resource tree. For example, if we need to
connect Logic Block 1, 2 4 and 8 with a
net in Fig 4, we must use the Switch Box
S1, S2, S4, S5, S6 and S7 to route the net.
The root vertex of this sub-tree is S7. We
can see from Fig. 4 that once the loca-
tions of the Logic Blocks is fixed on the
routing resource tree, the sub-tree of each
net is determined in terms of the Switch
Boxes and Logic Blocks. The algorithm
for constructing the sub-tree for each net
is listed as follows:

Algorithm: Construct Netlist Trees
For each net in the netlist
 iblk = block for source terminal of the net
 allocate a leaf node for iblk as a one-node tree
 For each sink terminal of the net
 Allocate a leaf node for this terminal block
 AddNode(node, tree)
 End for
End for

Function: AddNode(node, tree)
root = the root node of the tree ;
if the built tree covers node
 build the node on the path from root to node
else
 determine a new root of tree covering root and
node
 build the node on the path from new root to node
 Build the node on the path from new root to old
root
End if

Since the structure of the trees for each

net is determined, the algorithm to con-
struct the netlist trees is very efficient.
The constructing of tree for each net is
composed two processes: one is to ini-
tially construct a leaf node as a tree for
the source terminal block of the net; the

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 4

other is to iteratively add the leaf node for
each sink terminal of the net to the tree,
and add Switch Boxes for interconnection
if needed. In this algorithm, this process
is represented by the function AddNode.
In this function, two different situations
are processed based on the location of the
new node. If the built tree covers the new
node, that is, the new node is under the
root of the built tree. For example in Fig.
4, suppose we have built the sub-tree for
Logic Block 1 and Logic Block 4. When
we want to add the new Logic Block 2, at
this time, we only need to connect be-
tween the Logic Block 2 and Switch
Block 1, since the Switch Block 1 and
Switch Block 5 has been in the sub-tree.
On the other hand, if the built tree doesn’t
cover the new node, that is, the location
of the new node is not under the root. At
this time, we need to find a new root of a
new tree, which both covers the root and
the new node. This process is easy due to
the fact that we represent the tree in qua-
ternary numbers. We can shift the quater-
nary numbers for the location of each
Logic Block to get the new root. After the
new root is determined, we then need to
connect the path between the new root
and the old root, and the path between the
new root and the new node. Then the root
is updated. After processing each termi-
nal of the net, the tree for the net is con-
structed. For example, in the Fig. 4, we
assume the source terminal of the net is
on LB1, while the other sink terminals
are on LB2, 4 and 8 respectively. We first
construct a leaf node for LB1, and then
add a leaf node for LB4. In this process,
the new root S5 is determined and S1 as
well as S2 is inserted for interconnection
between LB1 and LB4. When we add
LB2 to the tree, we only need to connect
between S1 and LB2, since the tree cov-
ers the node LB2. At last, we add node
LB8 and S7 becomes the new root of the
tree.

4.2. Global Routing

As we know, the global routing deter-
mines the coarse routing topology of each
net in terms of channels. Since we con-
struct the sub-tree for each net, the chan-
nels traversed by each net are determined.
In this phase, we project the constructed
subtree of each net onto the routing re-
source tree by a specified order. If we can
route all the nets in the netlist without and
resource conflict, the global routing is
successful. On the contrary, if we run into
some conflicts, then we need to evaluate
the global routing in terms of the conflicts,
and rip-up the global routing and re-place
and reroute the circuit.

First, we break each net into some
track segments in channel. Then we pro-
ject each track segment in the channel by
the order of the level of the segment. We
decided to route the netlist in bottom-up
fashion, as the number of the tracks
needed to be routed is bigger, so is the
conflicts. The whole process is very effi-
cient and fast because we have con-
structed the sub-tree structure for each net
in the first place, the only thing we do in
this phase is route all the net in the bot-
tom-up order. It is determinant once the
sub-tree structure is available. After all of
these is finished, we could easily evaluate
the routing results.

4.3. Evaluating routing

We defined the evaluation of the rout-
ing results in terms of the resource con-
flicts ever encountered in the process of
the global routing. We formulate as fol-
lows:

∑
∑

=

i
itrks

i
iconf

netN

netN
routingConf

)(

)(
)((1)

In the equation 1, the Conflict for the
result routing is defined to be the ratio
between the sum of the number of con-
flicts and the sum of the number of tracks

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 5

for each net. If the Conflict is zero, then
we consider the routing successful. We
can also use this equation in the place-
ment phase as a guide.

4.4. Time Complexity Analysis

We first analyze the time complexity
of the routing sub-tree construction algo-
rithm. For each net of fan-out k, we need
to invoke the function AddNode k-1
times. The AddNode then find a proper
location to put the new node. From the
Fig. 4, we know that the maximum path
for the AddNode to look up is propor-
tional to the levels of the routing resource
tree. On the other hand, the levels of the
routing resource tree are determined by
the total number of Logic Blocks, i.e.
⎡ ⎤Nlog , in which N represent the num-
ber of the logic blocks. Moreover the
routing path is determined. So compared
to the improved Maze router in VPR, it is
very efficient and fast.

Fig. 6: Flow for HFPGA global routing

5. EXPERIMENTAL RESULTS

We have implemented the basic infra-
structure and algorithm in C++ language.
The implement flow is as follows (Fig. 6).
Like in VPR [3], we use an architecture
file to describe the architecture of
HFPGA, where we put together architec-
ture related parameters discussed in sec-
tion III. After parsing the architecture file,
we use a Fiduccia-Mattheyses [6] based
partition algorithm to partition the netlist.
Iteratively, we partition the netlist into
four sub-circuits, each of which is ran-
domly placed on each sub-tree. It is in

this period that the location of each Logic
Block in the HFPGA is determined.

Tab. 1: Experimental results for MCNC
benchmark

On the other hand, an architecture file

parser is used to parse the architecture file
to get the needed parameters, which are
applied to the routing tree builder to build
a k-way hierarchical tree. At last, the
global routing algorithm is applied to
route the netlist on the built routing re-
source tree. The experiments have been
carried out on the 11 large MCNC bench-
mark circuits. The characteristics of the
circuits and their related experimental re-
sults are presented in Table 1.

6. CONCLUSION AND FUTURE
WORKS

In this paper, we present an efficient
multilevel tree based global routing algo-
rithm for the hierarchical architecture of
FPGA. We take advantage of the hierar-
chical characteristic of HFPGA to make
the global routing extremely efficient and
fast. We use a hierarchical tree to repre-
sent the routing resource of HFPGA. In
the routing phase, the global routing
problem for each net is represented as a

Cir-
cuits

#clb #Net T/s T(Ma
ze)/s

Im-
prov
e

e64-
4lut

194 339 0.001 0.008 8

ex5p 1064 1072 0.015 0.255 17

apex4 1262 1271 0.015 0.245 16.3

misex3 1397 1411 0.015 0.195 13

alu4 1522 1536 0.016 0.195 12.2

des 1591 1847 0.015 0.115 9.6

seq 1750 1791 0.016 0.250 15.6

apex2 1878 1916 0.015 0.245 16.3

spla 3690 3706 0.031 0.475 15.3

pdc 4575 4591 1.766 6.656 3.8

ex1010 4598 4608 3.781 7.262 1.9

Aver 0.51 1.445 11.7

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 6

sub-tree determination problem. As soon
as the location of each Logic Block is
fixed, we can use a tree-growth-like algo-
rithm to determine the sub-tree on the
corresponding routing resource tree. As
the experimental results show, the pro-
posed algorithm is very efficient and fast.
In the future work, we are planning to
combine the placement phase and global
routing phase together to study the rela-
tionship between the placement and rout-
ing.

7. References

[1] Yen-Tai Lai and Ping-Tsung Wang,
“Hierarchical Interconnection Struc-
tures for Field Programmable Gate
Arrays” IEEE Trans. On VLSI Sys-
tems, Vol.5, No. 2, June 1997

[2] Mingjie Lin, Abbas El Gamal
"TORCH: a design tool for routing
channel segmentation in FPGAs" ,
Proceedings of the 16th international
ACM/SIGDA symposium on Field
programmable gate arrays, Feb. 2008
International Symposium on Circuits
and Systems.

[3] Vaughn Betz and Jonathan Rose,
“VPR: A New Packing, Placement
and Routing Tool for FPGA Re-
search”, 1997 International Workshop
On Field Programmable Logic and
Application.

[4] Yuh-Sheng Lee and Allen C.-H. Wu,
“A Performance and Routability-
Driven Router for FPGA’s Consider-
ing Path Delays” IEEE Trans. On
CAD of Integrated Circuits and Sys-
tems, vol. 16, no. 2, Feb 1997.

[5] Siva Nageswara Rao Borra, Anna-
malai Muthukaruppan, PS. Suresh,

PV. Kamakoti "A novel approach to
the placement and routing problems
for field programmable gate arrays"
Applied Soft Computing, Vol 7 no 1,
Jan. 2007.

[6] C. M. Fiduccia and R. M. Mattheyses,
“A linear-time heuristics for improv-
ing network partitions” Proceeding of
the 19th Design Automation Confer-
ence, pp. 175-181, 1982.

[7] Deming Chen, Jason Cong and Pei-
chen Pan, “FPGA Design Automation:
A Survey” Foundations and Trends in
EDA Vol. 1, No 3 (Nov. 2006) 195-
330.

[8] Larry McMurchie and Carl Ebeling,
“PathFinder: A Negotiation-Based
Performance-Driven Router for
FPGAs” Proc of the Third Interna-
tional ACM Symposium on FPGA’95.

[9] S. Brown, J. Rose, and Z. G. Vranesic,
“A detailed router for field program-
mable gate arrays”, IEEE Trans.
Computer-Aided Design, vol. 11, no.
5, pp. 620-628, May 1992.

[10] G. G. Lemieux and S. D. Brown,
“A detailed routing algorithm for al-
locating wire segments in field-
programmable gate arrays”, in Proc.
ACM/SIGDA Physical Design Work-
shop, 1993, pp. 215-226

[11] J. Rose, “Parallel global routing
for standard cells. IEEE Trans. On
Computer Aided Design of integrated
Circuits and Systems, 9(10): 1085-
1095, October 1990.

[12] R. Nair. “A simple yet effective
technique for global wiring”, IEEE
Trans. On Computer-Aided Design of
Integrated Circuits and Systems,
CAD-6(6): 165-172, March 1987.

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 7

