
Fast Wirelength-driven Partition-based
Placement for Island Style FPGAs*

Wentao Sui, Sheqin Dong, Jinian Bian, Xianlong Hong
Department of Computer Science and Technology, Tsinghua University, Beijing, China

suitwt05@mails.tsinghua.edu.cn, { dongsq, bianjn, hongxl }@mail.tsinghua.edu.cn

Abstract

In this paper, we propose a placement
method for island-style FPGAs. This
method consists of three steps: recursive
bi-partition with terminal propagation
consideration, minimum-cost flow initial
placement and low temperature simulated
annealing optimization. Unlike the tradi-
tional partitioning-based technique that is
based on min-cut partitioning, we apply
ratio partitioning in each level. For each
partitioning region, minimum-cost flow
algorithm is used to determine the initial
placement. We use low temperature
simulated annealing to improve the initial
placement result. Experimental results
show the efficiency and effectiveness of
our algorithm.

Keywords: Placement, Partition, Mini-
mum-cost Flow, SA

1. Introduction

Placement of FPGA is the physical de-
sign phase in which a netlist of circuit
blocks is mapped onto physical locations
typically arranged in a two dimensional
array. 1

Most of the recent CAD algorithms
usually take hours to map, place and
route circuits with millions of gates on a
state-of-the-art FPGA chip. This may nul-
lify its time-to-market and in particular,
the advantages of reconfigurability. With

*This work was supported by National Natural Science
Foundation of China under grant NSFC-90607001

increasing emphasis on reconfigurable
computing, there is a pressing need for
very fast CAD tools without sacrificing
the quality of solution.

The three major classes of placers used
today are partitioning-based, analytic-
based which are often followed by local
iterative improvement, and simulated an-
nealing (SA) based placers. Although
simulated annealing algorithms produce
good results, it requires enormous com-
putation time which may depend on the
initial configuration of the placement.
Traditionally, partition-based placement
algorithms [1, 2] have been fast and
hence scalable for larger design of the
future. Therefore, we shall develop our
placement algorithm based on the parti-
tioning-based approach.

In this paper, we present a wirelength
driven partitioning-based placement algo-
rithm. The placement algorithm consists
of three main steps: logic function blocks
placement, IO blocks placement and
placement optimization (Fig. 1). Unlike
the traditional partitioning-based tech-
nique that is based on balanced partition-
ing, we partition the net according the
net-weight which calculated dynamically.
The net weight varies according terminal
propagation during partitioning progress.
We use the minimum-cost flow to deter-
mine the initial placement, the edge
weight in the flow graph is related with
partition stage and physical position on
the chip. To improve the initial placement
result, a low temperature SA is used.

The rest of the paper is organized as
follows: Section 2 presents our partition-

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 1

based placement algorithm. In Section 3,
simulation results are shown.

2. Proposed algorithm

To improve the solution quality and
reduce the time of placement, we com-
bine the partitioning-based and the SA
based algorithms together.

Min cut Partitioning

of CLB netlist and
FPGA array by

recursive bi -partition

Relate physical
partition with logical

partiton

3

2
1

21

3 4

Regino -I

Regino -II

Regino -I

Regino -I

Physical location
determination using

Min_cost flow
acoording arc and

node weight

IO determination

accroding physical

distance

S

3

2

1 1 2

3 4

S

1 1

1 1

1

W
1

1

W 2

1 W3

w
4

31

2 4

31

2 4

S

3

2

1 1 2

3 4

S

io io

io io

1

W
1

1

W2

1 W
3

w4
Fig. 1: algorithm flow.

2.1. partition-based placement

In constructive placement approaches,
a circuit is either recursively bisected in
a top-down fashion [4] or basic elements
are clustered in a down-top fashion [3].

We model the technology-mapped
CLB netlist as a hyper-graph H(V, E).
Each vertex in the set V corresponds to a
logic block in the netlist. Each hyper-
edge in the set E represents a net in the
logic connection.

The hypergraph is bi-partitioned re-
cursively using the state-of-art hyper-
graph partition tool hMetis [6]. HMetis
reduces the size of the graph by collaps-
ing vertices and edges (coarsening
phase), partitions the reduced graph (ini-
tial partitioning phase), and then un-
coarsens it to construct a bi-partition for
the original graph (uncoarsening and re-
finement phase).

During the logical partition progress,
the physical chip is partitioned vertically
and horizontally at the same time. When
the number of blocks in each partition
equals to or is less than some predefined
threshold value, the partitioning process
ends.

2.2. net-weight computation

In [7], a hierarchical ratio partitioning
method was presented. We also employ
the net-weight estimation method simi-
lar with [7].

The logical vertexes can only be
mapped onto the dispersed position with
CLB on the FPGA. We mark the CLB
coordinates with integer pair (x, y), this
is distinguished with the coordinates on
the ASIC which the function blocks can
be mapped onto continuous position of
the chip. So the net-weight estimation is
fast. There are three situations which we
should update the weight (Fig. 2).

V-2V-1

V-2V-1

T-1

V-2V-1

T-1

(a) (b)

(c)

Figure 2: V-i is the

reprehensive of vertex
in net being cut, T- i is

external terminal

outside the partition

region.

Fig. 2: terminal consideration.

Before partition, we first allocate all

logical vertexes in the center of the
FPGA. Each hyperedge corresponds to a
multi-terminal net in the circuit. At first
each net is assigned a weight of half
width of the chip if the first cut direction
is vertical. In Fig. 2, the V-i represent
the vertex of the circuit being cut, the T-
i represent the vertex outside the parti-
tion regions which have connection with

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 2

netlist currently being cut. In Fig. 2(a),
when the net has only two vertexes, the
net weight is set to the half region width,
for the reason that if the net is cut be-
tween the two vertex, the wirelength
contribution got by these two vertex is
half of the partitioning region width. In
Fig. 2(b), we add the net weight with
dist(v2, t1) – dist(v1, t1). In this case, if
the net doesn’t be cut, the HPWL con-
tribution got from the net is dist(v1, t1),
this is certain. When the net is cut, the
HPWL increase is dist(v2, t1), then we
should decrease the dist(v1, t1) from
dist(v2, t1). In Fig. 2(c), the terminals
are outside the horizontal range of V-1
and V-2 and closer to V-1, the hyperedge
weight is appended with dist(v1, v2).
Each time the partitioning ends, if the
net isn’t being cut, the net weight value
is restored as prior to partitioning.

In order to compute the hyperedge
HWPL efficiently, we use an array to
recorder the left-bottom and top-right
bounding-box coordinates of each net.
After each partitioning, if the corner co-
ordinate varies, the bounding-box coor-
dinates of the net are updated.

2.3. min-cost flow placement

When the vertexes number in the cur-
rent partition below to some threshold
value, the net-weight based partition
ends and min-cost flow placement be-
gins. There are two kinds of vertexes in
the net-flow paragraph (Fig. 3), the
logical vertexes and the physical ver-
texes. The logical vertexes are corre-
sponding with blocks in the circuit and
the physical vertexes are corresponding
with CLBs on the chip one by one. We
add a Start and a Terminate vertex to the
net flow graph. There are three catego-
ries edges: edges form start node to
logical vertexes, edges from logical ver-
texes to physical vertexes and edges
form physical vertexes to the end vertex.

The weights and flow constraints of
edges from S node to logical vertex and

from physical vertex to T node are all
set with 1. According to the max flow
constraint conditions, the outflow of S
and the inflow of T are set to the logic
vertex number, which means to accom-
modate logical vertexes onto physical
vertexes.

S

3

2

1
1

2

3

4

T

1

1

1

1

1

W
(2
,1
)

1
W(
2,2
)

1

W
(2,4)

W(2,3)
S

3

2

1 1 2

3 4

T

1

1

1 1

1

W
1

1

W
2

1 W
3

w
4

Fig. 3: max flow graph

What is important is the edge between

the logical and physical vertexes. Each
physical vertex is different important to
the same logical vertexes (Fig. 4). In
Fig. 4, when we assign V-3 to different
physical location in the current partition
region, we can get different HPWL, so
we set different weight to different
physical location. To different net, the
same physical position has different
weight too. We add the edge weight and
physical vertexes weight together on the
edges between logical vertexes and
physical vertexes in the flow graph.

V-2V-1

N
e
t-
I

P-1 P-2

P-3 P-4

Net-II

Fig. 4: physical vertex weight
We solved the network flow formula-

tion using a software package developed
by Goldberg [9].

2.4. Placement of IOBs

We place the IO blocks using the
min-cost flow algorithm too. But the ca-
pacity of edges from physical nodes to
terminal node is set to io-rate, the num-

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 3

ber of IO pins in each CLB column and
row in FPGA.

2.5. Low temperature SA

To improve the quality of placement
further, an ultra-low temperature SA is
executed on it to obtain the final place-
ment configuration. Through experi-
ment, we deduced the starting tempera-
ture of the cooling schedule to be
0.005σ, where σ is the standard devia-
tion of the BB-costs of applying n ran-
dom swaps of adjacent blocks (the num-
ber of CLBs being n).

3. Experimental result

Table 1 show the characteristics of
nine MCNC benchmark circuits along
with the results obtained by our place-
ment method. We compare our place-
ment result with the result got from
VPR, a famous FPGA placement tool.

Form the column 8, we can see that
our initial placement result are 24.5%
better than initial placement of VPR in
average. Although the final bounding-
box cost of ours and the VPR are simi-
lar, the runtime of our placement is
32.4% faster than VPR’s, which shows
in column 15.

4. References

[1] U D. J.-H. Huang and A. B. Kahng,
“Partitioning-based Standard-cell
Global Placement with an Exact Ob-

jective”, Proc. ACM/IEEE ISPD,
1997.

[2] M. Wang, X. Yang and M. Sar-
rafzadeh, “DRAGON2000: Standard-
Cell Placment Tool for Large Indeus-
try Circuits”, Proc. ACM/IEEE IC-
CAD, 2000.

[3] P. Banerjee, S. Bhattacharjee, S. Sur-
Kolay, S. Das, S. C. Nandy, “Fast
FPGA placement using Space-filling
Curve”, Proc. Intl. Conf. Field Pro-
grammable Logic and Application,
2005.

[4] P. Banerjee and S. Sur-Kolay, “Faster
Placer for Island-style FPGAs”, Proc.
International Conference on Comput-
ing: Theory and Application, 2007.

[5] A. E. Dunlop and B. W. Kernighan,
“A Procedure for Placement of Stan-
dard-cell VLSI Circuits”, IEEE
Transactions on Computer-Aided De-
sign, 1985.

[6] http://www-sers.cs.umn.edu/karypis/
metis/hmetis/

[7] T. C. Chen, T. C. Hsu, “NTUplace: A
Ratio Partitioning Based Placement
Algorithm for Large-Scale Mixed-
Size Designs”, ISPD, 2005.

[8] V. Betz, and J. Rose, “VPR: A New
Packing, placement and routing Tool
for FPGA Research,” in 7th Intl.
Workshop on Field-Programmable
Logic and Applications, 213-222,
1997.

[9] A. V. Goldberg, “An efficient imple-
mentation of a scaling minimum-cost
flow algorithm,” J. Algorithms, 1997.

Table 1. Benchmark details, and comparison of cost and time: our method vs. VPR

I n it ia l bb -cost Fina l b b-cost Ru nt ime t ime(s)
C irc u it

b l ock
Num

IO
B l ock

Net
Num

ch i p d i -
mens i o n Vp r Ou r Imp rove(%) Vp r Ou r D if f i n i t ia l f i na l Vp r Imp rove(%)

Apex2 526 41 1405 40x40 582.984 397.748 31 .8 184.676 181.775 -2.901 3.4 16 25 36
Apex4 362 28 959 19x19 205.753 160.67 21 .9 121.014 121.207 0.193 1.3 9 16 43 .7 5
bigkey 853 426 1037 27x27 329.8 230.907 30 132.369 130.91 -1.459 2.5 20 34 41 .2
Clma 2280 144 6128 47x47 2876.31 2800.87 3 1002.22 1001.85 -0.37 42.1 204 281 27 .4
des 916 501 1503 32x32 497.731 320.729 35 160.652 158.014 -2.638 4.0 25 32 21 .9
diffeq 482 103 1180 20x20 241.475 207.801 13 .9 99.8887 100.687 0.7983 1.0 14 20 30
dsip 769 462 920 27x27 298.163 203.965 31 .6 117.288 118.317 1.029 2.7 20 26 23 .1
elliptic 1151 245 2450 31x31 752.888 580.124 22 .9 342.459 347.669 5.21 6.6 41 71 42 .3
S38584 1955 342 4706 41x41 1910.36 1330.83 30 .3 530.87 529.624 -1.246 15.7 120 162 25 .9
Avg: 24 . 5 32 .4

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 4

