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Abstract  

In this paper, we propose a placement 
method for island-style FPGAs. This 
method consists of three steps: recursive 
bi-partition with terminal propagation 
consideration, minimum-cost flow initial 
placement and low temperature simulated 
annealing optimization. Unlike the tradi-
tional partitioning-based technique that is 
based on min-cut partitioning, we apply 
ratio partitioning in each level. For each 
partitioning region, minimum-cost flow 
algorithm is used to determine the initial 
placement. We use low temperature 
simulated annealing to improve the initial 
placement result. Experimental results 
show the efficiency and effectiveness of 
our algorithm. 

Keywords: Placement, Partition, Mini-
mum-cost Flow, SA 

1. Introduction 

Placement of FPGA is the physical de-
sign phase in which a netlist of circuit 
blocks is mapped onto physical locations 
typically arranged in a two dimensional 
array. 1 

Most of the recent CAD algorithms 
usually take hours to map, place and 
route circuits with millions of gates on a 
state-of-the-art FPGA chip. This may nul-
lify its time-to-market and in particular, 
the advantages of reconfigurability. With 
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increasing emphasis on reconfigurable 
computing, there is a pressing need for 
very fast CAD tools without sacrificing 
the quality of solution. 

The three major classes of placers used 
today are partitioning-based, analytic-
based which are often followed by local 
iterative improvement, and simulated an-
nealing (SA) based placers. Although 
simulated annealing algorithms produce 
good results, it requires enormous com-
putation time which may depend on the 
initial configuration of the placement. 
Traditionally, partition-based placement 
algorithms [1, 2] have been fast and 
hence scalable for larger design of the 
future. Therefore, we shall develop our 
placement algorithm based on the parti-
tioning-based approach. 

In this paper, we present a wirelength 
driven partitioning-based placement algo-
rithm. The placement algorithm consists 
of three main steps: logic function blocks 
placement, IO blocks placement and 
placement optimization (Fig. 1). Unlike 
the traditional partitioning-based tech-
nique that is based on balanced partition-
ing, we partition the net according the 
net-weight which calculated dynamically.  
The net weight varies according terminal 
propagation during partitioning progress. 
We use the minimum-cost flow to deter-
mine the initial placement, the edge 
weight in the flow graph is related with 
partition stage and physical position on 
the chip. To improve the initial placement 
result, a low temperature SA is used. 

The rest of the paper is organized as 
follows: Section 2 presents our partition-
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based placement algorithm. In Section 3, 
simulation results are shown.  

2. Proposed algorithm 

To improve the solution quality and 
reduce the time of placement, we com-
bine the partitioning-based and the SA 
based algorithms together.  
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Fig. 1: algorithm flow. 

 
2.1. partition-based placement 

In constructive placement approaches, 
a circuit is either recursively bisected in 
a top-down fashion [4] or basic elements 
are clustered in a down-top fashion [3]. 

We model the technology-mapped 
CLB netlist as a hyper-graph H(V, E). 
Each vertex in the set V corresponds to a 
logic block in the netlist. Each hyper-
edge in the set E represents a net in the 
logic connection.  

The hypergraph is bi-partitioned re-
cursively using the state-of-art hyper-
graph partition tool hMetis [6]. HMetis  
reduces the size of the graph by collaps-
ing vertices and edges (coarsening 
phase), partitions the reduced graph (ini-
tial partitioning phase), and then un-
coarsens it to construct a bi-partition for 
the original graph (uncoarsening and re-
finement phase). 

During the logical partition progress, 
the physical chip is partitioned vertically 
and horizontally at the same time. When 
the number of blocks in each partition 
equals to or is less than some predefined 
threshold value, the partitioning process 
ends.  

2.2.  net-weight computation 

In [7], a hierarchical ratio partitioning 
method was presented. We also employ 
the net-weight estimation method simi-
lar with [7].  

The logical vertexes can only be 
mapped onto the dispersed position with 
CLB on the FPGA. We mark the CLB 
coordinates with integer pair (x, y), this 
is distinguished with the coordinates on 
the ASIC which the function blocks can 
be mapped onto continuous position of 
the chip. So the net-weight estimation is 
fast. There are three situations which we 
should update the weight (Fig. 2). 
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Fig. 2: terminal consideration. 

 
Before partition, we first allocate all 

logical vertexes in the center of the 
FPGA. Each hyperedge corresponds to a 
multi-terminal net in the circuit. At first 
each net is assigned a weight of half 
width of the chip if the first cut direction 
is vertical. In Fig. 2, the V-i represent 
the vertex of the circuit being cut, the T-
i represent the vertex outside the parti-
tion regions which have connection with 
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netlist currently being cut. In Fig. 2(a), 
when the net has only two vertexes, the 
net weight is set to the half region width, 
for the reason that if the net is cut be-
tween the two vertex, the wirelength 
contribution got by these two vertex is 
half of the partitioning region width. In 
Fig. 2(b), we add the net weight with 
dist(v2, t1) – dist(v1, t1). In this case, if 
the net doesn’t be cut, the HPWL con-
tribution got from the net is dist(v1, t1), 
this is certain. When the net is cut, the 
HPWL increase is dist(v2, t1), then we 
should decrease the dist(v1, t1) from 
dist(v2, t1). In Fig. 2(c), the terminals 
are outside the horizontal range of V-1 
and V-2 and closer to V-1, the hyperedge 
weight is appended with dist(v1, v2). 
Each time the partitioning ends, if the 
net isn’t being cut, the net weight value 
is restored as prior to partitioning. 

In order to compute the hyperedge 
HWPL efficiently, we use an array to 
recorder the left-bottom and top-right 
bounding-box coordinates of each net. 
After each partitioning, if the corner co-
ordinate varies, the bounding-box coor-
dinates of the net are updated. 

2.3. min-cost flow placement 

When the vertexes number in the cur-
rent partition below to some threshold 
value, the net-weight based partition 
ends and min-cost flow placement be-
gins. There are two kinds of vertexes in 
the net-flow paragraph (Fig. 3), the 
logical vertexes and the physical ver-
texes. The logical vertexes are corre-
sponding with blocks in the circuit and 
the physical vertexes are corresponding 
with CLBs on the chip one by one. We 
add a Start and a Terminate vertex to the 
net flow graph. There are three catego-
ries edges: edges form start node to 
logical vertexes, edges from logical ver-
texes to physical vertexes and edges 
form physical vertexes to the end vertex.  

The weights and flow constraints of 
edges from S node to logical vertex and 

from physical vertex to T node are all 
set with 1. According to the max flow 
constraint conditions, the outflow of S 
and the inflow of T are set to the logic 
vertex number, which means to accom-
modate logical vertexes onto physical 
vertexes.  
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Fig. 3: max flow graph 

 
What is important is the edge between 

the logical and physical vertexes. Each 
physical vertex is different important to 
the same logical vertexes (Fig. 4). In 
Fig. 4, when we assign V-3 to different 
physical location in the current partition 
region, we can get different HPWL, so 
we set different weight to different 
physical location. To different net, the 
same physical position has different 
weight too. We add the edge weight and 
physical vertexes weight together on the 
edges between logical vertexes and 
physical vertexes in the flow graph. 
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Fig. 4: physical vertex weight 
We solved the network flow formula-

tion using a software package developed 
by Goldberg [9]. 

2.4. Placement of IOBs 

We place the IO blocks using the 
min-cost flow algorithm too. But the ca-
pacity of edges from physical nodes to 
terminal node is set to io-rate, the num-
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ber of IO pins in each CLB column and 
row in FPGA. 

2.5. Low temperature SA 

To improve the quality of placement 
further, an ultra-low temperature SA is 
executed on it to obtain the final place-
ment configuration. Through experi-
ment, we deduced the starting tempera-
ture of the cooling schedule to be 
0.005σ, where σ is the standard devia-
tion of the BB-costs of applying n ran-
dom swaps of adjacent blocks (the num-
ber of CLBs being n). 

3. Experimental result 

Table 1 show the characteristics of 
nine MCNC benchmark circuits along 
with the results obtained by our place-
ment method. We compare our place-
ment result with the result got from 
VPR, a famous FPGA placement tool. 

Form the column 8, we can see that 
our initial placement result are 24.5% 
better than initial placement of VPR in 
average. Although the final bounding-
box cost of ours and the VPR are simi-
lar, the runtime of our placement is 
32.4% faster than VPR’s, which shows 
in column 15. 
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Table 1. Benchmark details, and comparison of cost and time: our method vs. VPR  

I n it ia l  bb -cost Fina l  b b-cost Ru nt ime t ime(s) 
C irc u it 

b l ock 
Num 

IO 
B l ock 

Net 
Num 

ch i p  d i -
mens i o n Vp r Ou r Imp rove(%) Vp r Ou r D if f  i n i t ia l  f i na l  Vp r  Imp rove(%) 

Apex2 526 41 1405 40x40 582.984 397.748 31 .8  184.676 181.775 -2.901 3.4 16 25 36  
Apex4 362 28 959 19x19 205.753 160.67 21 .9  121.014 121.207 0.193 1.3 9 16 43 .7 5  
bigkey 853 426 1037 27x27 329.8 230.907 30  132.369 130.91 -1.459 2.5 20 34 41 .2  
Clma 2280 144 6128 47x47 2876.31 2800.87 3  1002.22 1001.85 -0.37 42.1 204 281 27 .4  
des 916 501 1503 32x32 497.731 320.729 35  160.652 158.014 -2.638 4.0 25 32 21 .9  
diffeq 482 103 1180 20x20 241.475 207.801 13 .9  99.8887 100.687 0.7983 1.0 14 20 30  
dsip 769 462 920 27x27 298.163 203.965 31 .6  117.288 118.317 1.029 2.7 20 26 23 .1  
elliptic 1151 245 2450 31x31 752.888 580.124 22 .9  342.459 347.669 5.21 6.6 41 71 42 .3  
S38584 1955 342 4706 41x41 1910.36 1330.83 30 .3  530.87 529.624 -1.246 15.7 120 162 25 .9  
Avg:       24 . 5        32 .4  
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