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Abstract 

Test generation at RTL (Register-
Transfer Level) is a challenging task be-
cause bit and word variables co-existent 
and the high-level functional units impose 
more complex constraints. We propose an 
effective way to the problem. In our 
method, given the circuit as well as the 
fault point to be checked, we first con-
struct a new circuit, miter, by fault inser-
tion as well as miter reduction techniques. 
Then we solve the constraints of the miter 
by EHSAT, an efficient hybrid satisfiabil-
ity solver to obtain the required test vec-
tors. Experimental results demonstrate the 
effectiveness of our method. 

Keywords: RTL, fault, test generation, 
satisfiablity. 

1. Introduction 

Test vectors are critical in functional 
validation. Contrary to randomly gener-
ated ones, the test vectors generated by 
ATPG (automatic test pattern generation) 
tools apparently have higher efficiency in 
size and coverage. However, the ability 
of current ATPG tools is being over-
whelmed by larger and more complex de-
signs. One of the viable approaches to 
this problem is to do test generation at 
higher levels of abstraction [1]. 

By high-level we usually mean behav-
ioral level and RTL (register transfer 
level), where the later receives more at-
tention because RTL designs contain use-
ful high-level information while still 
maintain some circuit structure.  

So far, the research efforts in dealing 
with the complexity in RTL functional 
test generation focus on either test strat-
egy or problem solving engines used. 
Test strategy includes techniques such as 
test coverage [2], test model such as 
ADD (assignment decision diagram) [3], 
and hierarchical test generation [4]. Ref 
[3] presented an algorithm to automati-
cally generate test vectors from RTL cir-
cuits that target stuck-at faults in gate-
level circuits, which operates on a data 
structure called assignment decision dia-
gram. In [4], three levels of modeling are 
proposed, that is, high-level DD (decision 
diagrams), low-level Boolean differential 
equations, and medium-level DD.  

Until now the researchers have used 
various engines for test generation, such 
as LP (linear Programming) [5], ATPG 
[6], SAT [7], etc. The RTL circuits can be 
modeled in a unified way such as LP, but 
efficiency is the main drawback. If we 
want to apply Boolean ATPG or SAT, the 
RTL circuits have to be synthesized into 
gate-level circuits, which may result in 
tremendous circuit sizes. To solve the 
problem, [7] proposed to solve the Boo-
lean constraints in 3-SAT and arithmetic 
constraints in LP, while in [8] the corre-
sponding solvers used are word-level 
ATPG and modular arithmetic solver. 
Furthermore, there are still some works 
on extending traditional Boolean solver to 
deal with mixed bit/word constraints. Ref. 
[9] extended the DPLL procedure of Boo-
lean SAT to cope with hybrid bit/word 
constraints. Ref. [10] follows the similar 
idea but implements the procedure more 
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completely and thus improves the per-
formance fairly. 

In this paper, we will propose a RTL 
test generation method that is based on 
solving the satisfiability problem of the 
modified RTL circuit by EHSAT, a RTL 
constraint solver [10] we have developed. 
The miter, which is a new circuit created 
from the original circuit and by fault in-
sertion, will compile the difference be-
tween faulty and fault-free circuits, and if 
solved, will generate the test vector that 
can identify the difference. 

The rest of the paper is organized as: In 
Section 2, we will give an overview of 
our algorithm. Then we discuss how to 
create the miter by fault insertion in Sec-
tion 3. Following we will introduce the 
hybrid satisfiability solver EHSAT in 
Section 4. In Section 5, experiments are 
conducted and results analyzed. Section 6 
concludes the paper. 

2. Overview of the method 

The principle of satisfiability-based 
RTL test generation is illustrated in Fig.1. 
In the figure, the MUX is a multiplexor, = 
(equal) and > (great than) are compara-
tors, + is an arithmetic unit (adder), AND 
and OR are Boolean gates, W1, W2, W3, 
W4 are word inputs, B1 and B2 are Boo-
lean inputs, OUT is an output. 

 
 
 
 
 
 
 
 

Fig. 1: A simple RTL circuit 

Suppose we want to find a test vector 
that can detect a possible fault in the out-
put of AND (crossed point). That is, if the 
test vector is used as input to the circuit, 
the OUT of the correct and faulty circuit 
will output different values. 

One approach to the problem is to du-
plicate the original (faulty) circuit, and by 
adding some monitor circuits, construct a 
new circuit, called miter, as shown in 
Fig.2. The signal of the fault point in 
original circuit is inverted and replaces 
the corresponding signal in the duplicated 
circuit. The outputs of original and dupli-
cated circuits become inputs of a XOR 
gate, with MOUT as the global output. 
For efficiency reason, the original circuit 
need not be completely duplicated. In fact, 
we need only duplicate those units as well 
as connected lines that would be affected 
by the fault. For the circuit in Fig. 1 and 
the given fault point, duplicating only OR 
is enough, while other units and lines can 
be shared between original and duplicated 
circuits. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: The miter for test generation 

For the miter in Fig.2, we conclude that 
the there is a test vector that makes faulty 
and fault-free circuit output different val-
ues iff we can find an assignment of in-
puts that makes MOUT evaluate 1. 

The miter implies a set of constraints, 
which if solved, will result in the test vec-
tor. The constraints come from the in-
put/output relation of each unit as well as 
other requirements on specific variables, 
such as MOUT=1. These constraints are 
hard to solve because hybrid bit/word 
datatypes as well as more complex in-
put/output relations must be dealt with.  
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For above idea to be effectively im-
plemented, we must construct the miter 
with minimum size and solve the con-
straints of the miter efficiently. The test 
generation algorithm follows two steps: 

(1) According to specific fault point to 
be checked, a miter with minimum possi-
ble size is constructed. The miter can 
identify the difference between faulty and 
fault-free circuit via outputting 1 at 
MOUT, which is realized by fault inser-
tion. The size of the miter is reduced by 
topology analysis. 

(2) The constraints implied by the mi-
ter (determined by the units and intercon-
nections it contains), with MOUT=1 as 
the initial condition, are solved by a RTL 
hybrid satisfiability solver, EHSAT. If 
satisfiable, the resulting input is the test 
vector. Otherwise, the fault is unobserv-
able at the output. 

3. Miter construction 

First of all, a duplication of the original 
circuit is created, which shares primary 
inputs with the original circuit.  The out-
puts of the two circuits are XORed by a  
XOR gate, whose output  is MOUT. Fol-
lowing, the two major tasks are fault in-
sertion and meter reduction. 

 
3.1. Fault insertion 

The units (or components) of RTL cir-
cuits can be classified into three kinds: 
Boolean gates (such as AND, OR, NOT), 
arithmetic units (such as ADD, SUB), 
and interface units (such as MUX, CMP). 

For any unit whose output variable (or 
line) needs to be tested for a fault, we call 
it FauU, fault insertion is operated just on 
FauU’s output. According to the datatype 
of FauU’s output variable, we will use 
different fault insertion methods. 

If the FauU is a Boolean gate or a 
compare gate, that is, it has Boolean out-
put, an inverter will be inserted at FauF’s 

output, and all units in the duplicated cir-
cuit that are driven by the FauU are now 
modified to be driven by the inverter. 
Fig.3 illustrates this. 

 
 
 
 
 
 

(a) Before fault insertion  (b) After fault insertion 
Fig. 3: Fault insertion for Boolean Signals 

 
If the FauU is an arithmetic unit or a 

MUX which has a word-level output, an 
equal comparator (=) as well as a word 
variable is added. The two inputs of the 
comparator are FauU’s output and the 
newly added word variable (Wa), and the 
output of the comparator is set with zero. 
Also, all units in the duplicated circuit 
that are driven by the FauU are now 
modified to be driven by Wa. Fig.4 illus-
trates this. 

 
 
 
 
 
 
 

(a) Before fault insertion  (b) After fault insertion 
Fig. 4: Fault insertion for word signals 

 
After fault insertion, it is guaranteed 

that the generated test vector will differ-
entiate the faulty and fault-free circuit. 

 
3.2. Miter reduction 

The reason that we can reduce the size 
of the miter is that some units are not af-
fected by the FauU, thus can be shared 
between original and duplicated circuits.  

Only the descendants of the FauU 
needed to be duplicated in building the 
miter. A unit is a descendant of the FauU 
if there is a set of successive driving lines 

FauU

Duplicate
FauU

FauU 

Duplicate 
FauU 

FauU

Duplicate
FauU

FauU 

Duplicate 
FauU

Wa 

0 

Proceedings of the 11th Joint Conference on Information Sciences (2008) 
                                          Published by Atlantis Press 
                                                    © the authors 
                                                                3



that connect the FauU to the unit. The 
procedure of computing all descendants 
for a FauU is as: 

(1) Create a set Des with only one ele-
ment, FauU; 

(2) If Des is empty, stop; Otherwise, 
take a element, say, elem, from Des; 

(3) Mark elem with visited; 
(4) For each unit driven by elem and 

has not been marked visited, put the unit 
in Des; 

When the procedure completes, all 
units that are marked visited are descen-
dants of FauU. 

For the example in Fig.1 and Fig.2, 
only OR is a descendant of AND which 
needs duplicating, other units and lines 
can be shared. The reduced miter is 
shown in Fig.5. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5: The reduced miter 

4. RTL satisfiability solving 

This section is an overview of EHSAT, 
an efficient RTL satisfiability solver we 
have developed [10], which has been 
used as a stand-alone tool in our work. 
EHSAT adopts a complete extended 
DPLL procedure with conflict-driven 
learning, as well as several other tech-
niques for improving performance. 

 
4.1. Extended DPLL procedure 

The schematic of extended DPLL pro-
cedure is shown in Fig.6.  
 

Fig. 6: The extended DPLL Procedure 

To facilitate searching, both interval 
and bit-vector representations are kept for 
word variables. For example, a 3-bit word 
variable will have initial interval [0, 7] 
and bit-vector xxx. To avoid splitting the 
interval, decisions on a word variable is 
only made on the most significant bit 
(MSB). So if we assign the MSB of the 3-
bit word to 0, its interval becomes [0, 3]; 
if assign to 1, the interval will be [4, 7]. 

The decide() procedure also uses Vari-
able State Independent Decaying Sum 
(VSIDS) heuristic rule [11]. Every vari-
able has an activity number, which will 
shrink to half periodically. When conflict 
occurs, all variables that are involved in 
conflict will have this number increased. 
A variable with larger activity number 
has higher priority in decision assignment. 

EHSAT also uses hybrid constraint 
propagation, which contains two parts. 
One is Hybrid-Two-Literal-Watching, 
which is an extension of zChaff’s idea 
[11], whose main benefit is lessening the 
workload during backtracking. The other 
part is predicate-based interval reasoning. 
One example of interval reasoning is: if 
X=[2, 4], Y=[3, 5] and X>Y, we immedi-
ately conclude X=[4], Y= [3].  

 
4.2. Conflict-driven learning 

In EHSAT, conflict-based learning is 
implemented using an implication graph 
and First Bit Unique Implementation 
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Procedure EDPLL () 
     while (decide ( ) = = SUCCESS) 

while (hcp ( ) = = CONFLICT) 
         int (blevel = analyze_conflicts ( ); 
         If (blevel<0) return UNSAT; 

else backtrack (blevel); 
     return SAT; 

Procedure analyze_conflicts ( ) 
If ( dlevel ( ) = = 0) return -1; 

   return First Bit UIP ( );
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Point (IBUIP) scheme, which are adapted 
from their Boolean versions in [11][12]. 

When a conflict occurs, the implication 
graph is used to find the assignments that 
are directly responsible for the conflict. 
Through a negation operation, these as-
signments form a learned clause, which 
will be added into the clause database. 
IBUIP helps implement the non-
chronological backtracking. The added 
learned clause prunes the search space so 
that the solver won’t repeat the same con-
flicts in future searching. 

5. Experiments 

We implemented our algorithm in C 
and tested it with some examples pro-
vided along with the RTL SAT tool hdpll 
[9]. The characteristics of the circuits are 
shown in Table 1. 

 
Table 1: The characteristics of the test cases 
 
 
 
 
 
 
 
 
 
 

Because efficiency is the major con-
cern, we will only investigate the per-
formance issues in the experiments. For 
an instance, all possible fault point will 
be considered for test generation, and the 
global performance is recorded. 

We conduct the experiment as: for 
each instance, we test every possible 
fault-point for it in topological order, and 
summarize the results to get the global 
performance. Table 2 gives the results. 

As expected, as circuit size increases, 
the average time used for a test genera-
tion also increases. However, perform-
ance degradation does not match circuit 

scaling. We can use TPU (time-per-unit) 
as an intuitive measurement, defined as: 

Ta
NwNb

Ta
NuTPU +==               (1) 

where Nu, Nb, Nw are the numbers of 
units, Boolean units, and word-level units 
respectively. Ta is the average run time. 
The TPU results are shown in Table 3. 

 
 

 
 
 

 
 
 
 

 

We can see that for both B01 and B02, 
as circuit size increases, TPU will de-
crease. This implies that the run time in-
creases slower than circuit size. 

Another observation that demonstrates 
the efficiency of our method is that even 
for fairly large circuits, such and B01_20 
and B02_20, one time test generation 
consumes only about a half second. 

In summary, our algorithm shows good 
robustness and efficiency. 

6. Conclusion 

The method proposed in this paper is 
rather competitive both in generality and 
in efficiency. For generality, the fault in-

Table 1. The characteristics of the test cases 
characteristic Circuits #Boolean #word #PI / #PO 

B01_3 33 16 3 / 1 
B01_5 97 46 7 / 1 
B01_10 257 121 17 / 1 
B01_15 417 196 27 / 1 
B01_20 577 271 37 / 1 
B02_5 91 86 5 / 1 
B02_10 241 226 10 / 1 
B02_15 391 366 15 / 1 
B02_20 541 506 20 / 1 

# Boolean / #word: number of Boolean/word units.
#PI / #PO: number of primary inputs/outputs. 

Table 2. Performance of the TG method 
Performance Circuits #TG Total time Average time 

B01_3 48 6.07 0.13 
B01_5 142 18.14 0.13 
B01_10 377 86.81 0.23 
B01_15 612 200.27 0.33 
B01_20 847 353.06 0.42 
B02_5 176 21.16 0.12 
B02_10 466 103.19 0.22 
B02_15 756 259.22 0.34 
B02_20 1046 476.17 0.46 

# TG: the number of test generations performed. 
Total and Average times are in seconds. 
Table 3. TPU measurement of the algorithm 

Measurement Circuits Nu Ta (s) TPU 
B01_3 49 0.13 0.00265 
B01_5 143 0.13 0.00091 
B01_10 378 0.23 0.00061 
B01_15 613 0.33 0.00054 
B01_20 848 0.42 0.00050 
B02_5 177 0.12 0.00068 
B02_10 467 0.22 0.00047 
B02_15 757 0.34 0.00045 
B02_20 1047 0.46 0.00044 
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sertion and miter reduction techniques are 
general-purpose and applicable to any 
RTL designs expressed as interconnected 
units. Meanwhile, the efficiency is largely 
owed to EHSAT. 

Our future effort will consider the se-
quential behavior of RTL designs and ex-
tend present work to sequential test gen-
eration. Coverage issues will also be in-
cluded as the measurement of test quality. 
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