
RTL Test Generation via Fault Insertion
and Hybrid Satisfiability Solving

Weimin Wu
Department of Computer Engineering, Beijing Jiaotong University

Abstract

Test generation at RTL (Register-
Transfer Level) is a challenging task be-
cause bit and word variables co-existent
and the high-level functional units impose
more complex constraints. We propose an
effective way to the problem. In our
method, given the circuit as well as the
fault point to be checked, we first con-
struct a new circuit, miter, by fault inser-
tion as well as miter reduction techniques.
Then we solve the constraints of the miter
by EHSAT, an efficient hybrid satisfiabil-
ity solver to obtain the required test vec-
tors. Experimental results demonstrate the
effectiveness of our method.

Keywords: RTL, fault, test generation,
satisfiablity.

1. Introduction

Test vectors are critical in functional
validation. Contrary to randomly gener-
ated ones, the test vectors generated by
ATPG (automatic test pattern generation)
tools apparently have higher efficiency in
size and coverage. However, the ability
of current ATPG tools is being over-
whelmed by larger and more complex de-
signs. One of the viable approaches to
this problem is to do test generation at
higher levels of abstraction [1].

By high-level we usually mean behav-
ioral level and RTL (register transfer
level), where the later receives more at-
tention because RTL designs contain use-
ful high-level information while still
maintain some circuit structure.

So far, the research efforts in dealing
with the complexity in RTL functional
test generation focus on either test strat-
egy or problem solving engines used.
Test strategy includes techniques such as
test coverage [2], test model such as
ADD (assignment decision diagram) [3],
and hierarchical test generation [4]. Ref
[3] presented an algorithm to automati-
cally generate test vectors from RTL cir-
cuits that target stuck-at faults in gate-
level circuits, which operates on a data
structure called assignment decision dia-
gram. In [4], three levels of modeling are
proposed, that is, high-level DD (decision
diagrams), low-level Boolean differential
equations, and medium-level DD.

Until now the researchers have used
various engines for test generation, such
as LP (linear Programming) [5], ATPG
[6], SAT [7], etc. The RTL circuits can be
modeled in a unified way such as LP, but
efficiency is the main drawback. If we
want to apply Boolean ATPG or SAT, the
RTL circuits have to be synthesized into
gate-level circuits, which may result in
tremendous circuit sizes. To solve the
problem, [7] proposed to solve the Boo-
lean constraints in 3-SAT and arithmetic
constraints in LP, while in [8] the corre-
sponding solvers used are word-level
ATPG and modular arithmetic solver.
Furthermore, there are still some works
on extending traditional Boolean solver to
deal with mixed bit/word constraints. Ref.
[9] extended the DPLL procedure of Boo-
lean SAT to cope with hybrid bit/word
constraints. Ref. [10] follows the similar
idea but implements the procedure more

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 1

completely and thus improves the per-
formance fairly.

In this paper, we will propose a RTL
test generation method that is based on
solving the satisfiability problem of the
modified RTL circuit by EHSAT, a RTL
constraint solver [10] we have developed.
The miter, which is a new circuit created
from the original circuit and by fault in-
sertion, will compile the difference be-
tween faulty and fault-free circuits, and if
solved, will generate the test vector that
can identify the difference.

The rest of the paper is organized as: In
Section 2, we will give an overview of
our algorithm. Then we discuss how to
create the miter by fault insertion in Sec-
tion 3. Following we will introduce the
hybrid satisfiability solver EHSAT in
Section 4. In Section 5, experiments are
conducted and results analyzed. Section 6
concludes the paper.

2. Overview of the method

The principle of satisfiability-based
RTL test generation is illustrated in Fig.1.
In the figure, the MUX is a multiplexor, =
(equal) and > (great than) are compara-
tors, + is an arithmetic unit (adder), AND
and OR are Boolean gates, W1, W2, W3,
W4 are word inputs, B1 and B2 are Boo-
lean inputs, OUT is an output.

Fig. 1: A simple RTL circuit

Suppose we want to find a test vector
that can detect a possible fault in the out-
put of AND (crossed point). That is, if the
test vector is used as input to the circuit,
the OUT of the correct and faulty circuit
will output different values.

One approach to the problem is to du-
plicate the original (faulty) circuit, and by
adding some monitor circuits, construct a
new circuit, called miter, as shown in
Fig.2. The signal of the fault point in
original circuit is inverted and replaces
the corresponding signal in the duplicated
circuit. The outputs of original and dupli-
cated circuits become inputs of a XOR
gate, with MOUT as the global output.
For efficiency reason, the original circuit
need not be completely duplicated. In fact,
we need only duplicate those units as well
as connected lines that would be affected
by the fault. For the circuit in Fig. 1 and
the given fault point, duplicating only OR
is enough, while other units and lines can
be shared between original and duplicated
circuits.

Fig. 2: The miter for test generation

For the miter in Fig.2, we conclude that
the there is a test vector that makes faulty
and fault-free circuit output different val-
ues iff we can find an assignment of in-
puts that makes MOUT evaluate 1.

The miter implies a set of constraints,
which if solved, will result in the test vec-
tor. The constraints come from the in-
put/output relation of each unit as well as
other requirements on specific variables,
such as MOUT=1. These constraints are
hard to solve because hybrid bit/word
datatypes as well as more complex in-
put/output relations must be dealt with.

>

= AND

ORMUX

W1

W2
W3

W4

B2

OUT

×

0

1

B1

+
V

⊕

>

AND
OR

>

AND
OR

MOUT

Original Circuit

Duplicated Circuit

Inputs (B1, M1, …, M4)

•
•

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 2

For above idea to be effectively im-
plemented, we must construct the miter
with minimum size and solve the con-
straints of the miter efficiently. The test
generation algorithm follows two steps:

(1) According to specific fault point to
be checked, a miter with minimum possi-
ble size is constructed. The miter can
identify the difference between faulty and
fault-free circuit via outputting 1 at
MOUT, which is realized by fault inser-
tion. The size of the miter is reduced by
topology analysis.

(2) The constraints implied by the mi-
ter (determined by the units and intercon-
nections it contains), with MOUT=1 as
the initial condition, are solved by a RTL
hybrid satisfiability solver, EHSAT. If
satisfiable, the resulting input is the test
vector. Otherwise, the fault is unobserv-
able at the output.

3. Miter construction

First of all, a duplication of the original
circuit is created, which shares primary
inputs with the original circuit. The out-
puts of the two circuits are XORed by a
XOR gate, whose output is MOUT. Fol-
lowing, the two major tasks are fault in-
sertion and meter reduction.

3.1. Fault insertion

The units (or components) of RTL cir-
cuits can be classified into three kinds:
Boolean gates (such as AND, OR, NOT),
arithmetic units (such as ADD, SUB),
and interface units (such as MUX, CMP).

For any unit whose output variable (or
line) needs to be tested for a fault, we call
it FauU, fault insertion is operated just on
FauU’s output. According to the datatype
of FauU’s output variable, we will use
different fault insertion methods.

If the FauU is a Boolean gate or a
compare gate, that is, it has Boolean out-
put, an inverter will be inserted at FauF’s

output, and all units in the duplicated cir-
cuit that are driven by the FauU are now
modified to be driven by the inverter.
Fig.3 illustrates this.

(a) Before fault insertion (b) After fault insertion
Fig. 3: Fault insertion for Boolean Signals

If the FauU is an arithmetic unit or a

MUX which has a word-level output, an
equal comparator (=) as well as a word
variable is added. The two inputs of the
comparator are FauU’s output and the
newly added word variable (Wa), and the
output of the comparator is set with zero.
Also, all units in the duplicated circuit
that are driven by the FauU are now
modified to be driven by Wa. Fig.4 illus-
trates this.

(a) Before fault insertion (b) After fault insertion
Fig. 4: Fault insertion for word signals

After fault insertion, it is guaranteed

that the generated test vector will differ-
entiate the faulty and fault-free circuit.

3.2. Miter reduction

The reason that we can reduce the size
of the miter is that some units are not af-
fected by the FauU, thus can be shared
between original and duplicated circuits.

Only the descendants of the FauU
needed to be duplicated in building the
miter. A unit is a descendant of the FauU
if there is a set of successive driving lines

FauU

Duplicate
FauU

FauU

Duplicate
FauU

FauU

Duplicate
FauU

FauU

Duplicate
FauU

Wa

0

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 3

that connect the FauU to the unit. The
procedure of computing all descendants
for a FauU is as:

(1) Create a set Des with only one ele-
ment, FauU;

(2) If Des is empty, stop; Otherwise,
take a element, say, elem, from Des;

(3) Mark elem with visited;
(4) For each unit driven by elem and

has not been marked visited, put the unit
in Des;

When the procedure completes, all
units that are marked visited are descen-
dants of FauU.

For the example in Fig.1 and Fig.2,
only OR is a descendant of AND which
needs duplicating, other units and lines
can be shared. The reduced miter is
shown in Fig.5.

Fig. 5: The reduced miter

4. RTL satisfiability solving

This section is an overview of EHSAT,
an efficient RTL satisfiability solver we
have developed [10], which has been
used as a stand-alone tool in our work.
EHSAT adopts a complete extended
DPLL procedure with conflict-driven
learning, as well as several other tech-
niques for improving performance.

4.1. Extended DPLL procedure

The schematic of extended DPLL pro-
cedure is shown in Fig.6.

Fig. 6: The extended DPLL Procedure

To facilitate searching, both interval
and bit-vector representations are kept for
word variables. For example, a 3-bit word
variable will have initial interval [0, 7]
and bit-vector xxx. To avoid splitting the
interval, decisions on a word variable is
only made on the most significant bit
(MSB). So if we assign the MSB of the 3-
bit word to 0, its interval becomes [0, 3];
if assign to 1, the interval will be [4, 7].

The decide() procedure also uses Vari-
able State Independent Decaying Sum
(VSIDS) heuristic rule [11]. Every vari-
able has an activity number, which will
shrink to half periodically. When conflict
occurs, all variables that are involved in
conflict will have this number increased.
A variable with larger activity number
has higher priority in decision assignment.

EHSAT also uses hybrid constraint
propagation, which contains two parts.
One is Hybrid-Two-Literal-Watching,
which is an extension of zChaff’s idea
[11], whose main benefit is lessening the
workload during backtracking. The other
part is predicate-based interval reasoning.
One example of interval reasoning is: if
X=[2, 4], Y=[3, 5] and X>Y, we immedi-
ately conclude X=[4], Y= [3].

4.2. Conflict-driven learning

In EHSAT, conflict-based learning is
implemented using an implication graph
and First Bit Unique Implementation

⊕

>

AND

OR

OR

MOUT

Inputs (B1, M1, …, M4)

•
•

Procedure EDPLL ()
 while (decide () = = SUCCESS)

while (hcp () = = CONFLICT)
 int (blevel = analyze_conflicts ();
 If (blevel<0) return UNSAT;

else backtrack (blevel);
 return SAT;

Procedure analyze_conflicts ()
If (dlevel () = = 0) return -1;

 return First Bit UIP ();

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 4

Point (IBUIP) scheme, which are adapted
from their Boolean versions in [11][12].

When a conflict occurs, the implication
graph is used to find the assignments that
are directly responsible for the conflict.
Through a negation operation, these as-
signments form a learned clause, which
will be added into the clause database.
IBUIP helps implement the non-
chronological backtracking. The added
learned clause prunes the search space so
that the solver won’t repeat the same con-
flicts in future searching.

5. Experiments

We implemented our algorithm in C
and tested it with some examples pro-
vided along with the RTL SAT tool hdpll
[9]. The characteristics of the circuits are
shown in Table 1.

Table 1: The characteristics of the test cases

Because efficiency is the major con-
cern, we will only investigate the per-
formance issues in the experiments. For
an instance, all possible fault point will
be considered for test generation, and the
global performance is recorded.

We conduct the experiment as: for
each instance, we test every possible
fault-point for it in topological order, and
summarize the results to get the global
performance. Table 2 gives the results.

As expected, as circuit size increases,
the average time used for a test genera-
tion also increases. However, perform-
ance degradation does not match circuit

scaling. We can use TPU (time-per-unit)
as an intuitive measurement, defined as:

Ta
NwNb

Ta
NuTPU +== (1)

where Nu, Nb, Nw are the numbers of
units, Boolean units, and word-level units
respectively. Ta is the average run time.
The TPU results are shown in Table 3.

We can see that for both B01 and B02,
as circuit size increases, TPU will de-
crease. This implies that the run time in-
creases slower than circuit size.

Another observation that demonstrates
the efficiency of our method is that even
for fairly large circuits, such and B01_20
and B02_20, one time test generation
consumes only about a half second.

In summary, our algorithm shows good
robustness and efficiency.

6. Conclusion

The method proposed in this paper is
rather competitive both in generality and
in efficiency. For generality, the fault in-

Table 1. The characteristics of the test cases
characteristic Circuits #Boolean #word #PI / #PO

B01_3 33 16 3 / 1
B01_5 97 46 7 / 1
B01_10 257 121 17 / 1
B01_15 417 196 27 / 1
B01_20 577 271 37 / 1
B02_5 91 86 5 / 1
B02_10 241 226 10 / 1
B02_15 391 366 15 / 1
B02_20 541 506 20 / 1

Boolean / #word: number of Boolean/word units.
#PI / #PO: number of primary inputs/outputs.

Table 2. Performance of the TG method
Performance Circuits #TG Total time Average time

B01_3 48 6.07 0.13
B01_5 142 18.14 0.13
B01_10 377 86.81 0.23
B01_15 612 200.27 0.33
B01_20 847 353.06 0.42
B02_5 176 21.16 0.12
B02_10 466 103.19 0.22
B02_15 756 259.22 0.34
B02_20 1046 476.17 0.46

TG: the number of test generations performed.
Total and Average times are in seconds.
Table 3. TPU measurement of the algorithm

Measurement Circuits Nu Ta (s) TPU
B01_3 49 0.13 0.00265
B01_5 143 0.13 0.00091
B01_10 378 0.23 0.00061
B01_15 613 0.33 0.00054
B01_20 848 0.42 0.00050
B02_5 177 0.12 0.00068
B02_10 467 0.22 0.00047
B02_15 757 0.34 0.00045
B02_20 1047 0.46 0.00044

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 5

sertion and miter reduction techniques are
general-purpose and applicable to any
RTL designs expressed as interconnected
units. Meanwhile, the efficiency is largely
owed to EHSAT.

Our future effort will consider the se-
quential behavior of RTL designs and ex-
tend present work to sequential test gen-
eration. Coverage issues will also be in-
cluded as the measurement of test quality.

7. Acknowledgments

The research in the paper is supported
by National Science foundation of China
(grant number 60673034), and is also
partly supported by Science and Technol-
ogy foundation of Beijing Jiaotong Uni-
versity (grant numbers 2007XM011 and
2008RC002). These supports are grate-
fully acknowledged. However, Shujun
Deng, the developer of EHSAT, deserves
special appreciation.

8. References

[1] G. Jervan, Z. Peng, O. Goloubeva, M.
Sonza Reorda, M. Violante, “High-
Level and Hierarchical Test Sequence
Genaration”, IEEE International
Workshop on High Level Design
Validation and Test, 2002, pp.169-
174.

[2] F. Fallah, P. Ashar, S. Devadas,
“Functional Vector Generation for
Sequential HDL Models Under an
Observability-Based Code Coverage
Metric”, IEEE Trans. VLSI, vol.10,
no.6, pp.919-923, 2002.

[3] I. Ghosh, M. Fujita, “Automatic Test
Pattern Generation for Functional
Register-Transfer Level Circuits Us-
ing Assignment Decision Diagrams”,
IEEE Trans. Computer-Aided Design,
vol.20, no.3, pp.402-415, 2001.

[4] R. Ubar, J. Raik, “Efficient Hierar-
chical Approach to Test Generation
for Digital Systems”, International

Symposium on Quality Electronic De-
sign, 2000, pp.189-195.

[5] Z. Zeng, P. Kalla, M. Ciesielski,
“LPSAT: A Unified Approach to
RTL Satisfiability”, Design, Automa-
tion and Test in Europe Conference,
2001, pp.398-402.

[6] L. Lingappan, S. Ravi, N. K. Jha,
“Test Generation for Non-Separable
RTL Controller-Datapath Circuits Us-
ing a Satisfiability Based Approach”,
IEEE International Conference on
Computer Design, 2003, pp.187-193.

[7] F. Fallah, S. Devadas, and K. Keutzer,
“Functional Vector Generation for
HDL Models Using Linear Program-
ming and Boolean Satisfiability”,
IEEE Trans. Computer-Aided Design,
vol.20, no.8, pp.994-1002, 2001.

[8] C. Y. Huang, K. T. Cheng, “Using
Word-level ATPG and Modular
Arithmetic Constraint-Solving Tech-
niques for Assertion Property Check-
ing”, IEEE Trans. Computer-Aided
Design, vol.20, no.3, pp.381-391,
2001.

[9] G. Parthasarathy, M. K. Iyer, K. T.
Cheng, Li-C Wang, “An Efficient Fi-
nite-Domain Constraint Solver for
Circuits”, ACM/IEEE Design Auto-
mation Conference, 2004, pp.212-217.

[10] Shujun Deng, Jinian Bian, Weimin
Wu, Xiaoqing Yang, Yanni Zhao,
“EHSAT: An Efficient RTL Satisfi-
ability Solver Using an Extended
DPLL Procedure”, ACM/IEEE De-
sign Automation Conference, 2007,
pp.588-593.

[11] M. W. Moskewicz, C. F. Madigan, Y.
Zhao, L. Zhang, and S. Malik, “Chaff:
Engineering an Efficient SAT Solver”,
ACM/IEEE Design Automation Con-
ference, 2001, pp.530-535.

[12] J. P. Marques-Silva and K. A. Sakal-
lah, “GRASP: A New Search Algo-
rithm for Satisfiability”, International
Conference on Computer Aided De-
sign, 1997, pp.220-227.

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 6

