
Technical Research on Describing Recon-
figurable Systems by Object Oriented

Petri net
Jun Guo1,2 Sheqin Dong 1 Kegang Hao2 Satoshi Goto3

1Dept. of Computer Science of Tsinghua University, Beijin 100084
2Dept. of Computer Science of Northwest University, Xi’an 710069

3Graduate School of IPS of Waseda University, Kitakyushu

Abstract

An object oriented Petri net was proposed
in order to describe reconfigurable sys-
tems. The formal definitions of this kind
of Petri net were presented carefully. The
methods of subnet partition were dis-
cussed in details. And techniques of map-
ping objects to reconfigurable platform
were discussed as well. The features of
the mentioned Petri net were summarized
briefly.

Keywords: Petri net; reconfigurable sys-
tems; Object oriented

1. Introduction

Reconfigurable computing (RC) is a
novel computing pattern nowadays. RC
systems assign intensive computing tasks
to reconfigurable hardware. Owing to the
high computing speed of hardware, the
system performance increase greatly.
Therefore, RC systems play important
roles in the aspects of image processing,
biology computing, cryptogram algo-
rithms and multimedia communication
[1].
The techniques and methods of designing
RC systems are quite different from tradi-
tional computers for the reason that re-

configurable hardware is adopted in the
architecture. Software/hardware co-
design method was regarded as the effec-
tive way to design RC systems. Firstly, a
suitable model should be chosen to de-
scribe the RC systems. There are several
models could be used, such as
data/control flow diagram, FSM, Petri
nets and UML. The formal method was
argued as a promising candidate by rea-
son of easy understanding and verifica-
tion. Petri nets are formal method for de-
scribing concurrent, asynchronous and
resource collision systems. The functions
of system could be verified by running
Petri net model. And the performance of
system could be analyzed at the same
time. In this paper, a kind of Object ori-
ented Petri net (OPN) was proposed for
describing RC systems. Section 2 dis-
cusses the formal definitions of OPN.
Section 3 discusses the methods of as-
sembling and disassembling objects of
OPN. Section 4 discusses the techniques
of mapping OPN to hardware/software of
RC systems. Section 4 summarizes the
research work.

2. Object Oriented Petri Net

Petri nets have been studied for many
years and formally defined in mathemat-
ics. Petri net model could be presented by
graphic symbols, which could describe
the static structure and dynamic behaviors

*This work is supported by NSFC 90307005

and NSFC 60473126

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 1

of system. But traditional Petri net is non-
hiberarchy and non-modular and also
lacks the ability to process data flow and
mutual action. Many scholars introduced
new concepts to Petri nets for their own
applications requirements, such as col-
ored token, object oriented, open ports
[2,3,4,5]. These extended Petri nets are
modular, re-useable and have the data
process and mutual action ability. In this
section, a practical object oriented Petri
net is defined formally for modeling RC
systems.
Definition 1 The basic Petri nets is five-
tuple PN=(P,T,F,W,M), Where,
P is a infinite set of places；
T is a infinite set of transitions,T∩P=
Φ；
F is a infinite set of arcs ，

)()(PTTPF   ;

W: F→{1,2,…} is weight function；
M: P→{0,1,2,…} is marking，represent
by tokens，M0 is initial marking。
Petri net can be represented by graphic
symbols. Fig. 1 shows a typical example
of Petri net, which describes a pro-
ducer/customer system. In fig.1, a circle
represents for a place, a rectangle repre-
sents for a transition. Tokens are repre-
sented by black dots or an integer.
Dynamic behaviors of Petri net can be
defined by transition firing, which de-
scribe the system state transfer.
Definition 2 PN is a Petri net ，

TPx  ，

}),({ FxyTPyyx  

}),({ FyxTPyyx  

•x is the pre-sets of x，
x• is the post-sets of x.
Definition 3 tp  , if

),()(tpWpM  ， t is said to be en-

abled.

Definition 4 if the present marking is
M，enabled transition t firing will cause
the marking change into M’
A data flow Petri net was defined so that
the model can cope with the data flows.
Definition 5 data flow Petri net is six-
tuple DPN=(Q,P,T,F,W,M)
Where Q is data place set; transition is

extended to data operation; G is guard
function; P、F、W、M is already de-
fined.
Object oriented conceptions were intro-
duced to Petri net in order to get modular
structure and reusable ability.
Definition 6 object oriented Petri net is
OPN=(O,DPN)，DPN is data flow Petri
net；O={o1, o2 ,…,ov} is the infinite set
of objects.
Definition 7 Class is the abstract of simi-
lar objects, consists of name, internal
structure, ports. The internal structure of
class contains all elements of OPN. Ports
are places or transitions which communi-
cate with outside objects.
According to definition 7, elements inside
object are encapsulated. Objects commu-
nicate with each other through ports. Both
place and transition can work as port. As
is different from previous object oriented
Petri net [2,3,6], where only places could
play as ports. That means port can not
sent messages actively. Messages can be
sent actively through ports of transition in
OPN. It is good for objects to communi-
cate easily and get the ability of mutual
action.
From the point of object oriented view,
object is the instance of class. Class can
be cited to create many instances of ob-
jects. As a result, objects can be reused in
OPN. Reusability helps to modeling large
scale systems.

















casesotherpM

ttpptWtpWpM

ttpptWpM

ttptpWpM

pM

),(

),,(),()(

),,()(

),,()(

)('


Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 2

Fig.2 shows the OPN model of pro-
ducer/customer system. There are 2 ob-
jects encapsulated in rectangle: producer
and customer. Transition t12, t22 and
place p14, p24 are ports. Inside the object
is a subnet of OPN. The details of object
can be concealed.
Investigation of the example shows that
OPN consists of four elements in fact:
place, transition, arc and object. A system
contains many objects, which connected
with each other through ports. Consider-
ing the Petri nets, system consists of ob-
ject subnet, which can be regarded as a
module. Therefore OPN is a modular
structure.

Fig. 1: Producer/customer system

Fig. 2: Objects in producer/customer system.

3. Objects Assemble and Decompose

The objects in RC systems should be con-
figured according to application goals
under the constraints of runtime, cost and

resource. In OPN model, a balance of
multi-aim optimum can be achieved by
assembling objects. Every task of the sys-
tem can be described as an object subnet
in OPN. To assemble all the objects will
set up the application system. On the
other hand, a complicated subnet can be
decomposed into several simple objects,
which is more suitable to realize by soft-
ware or hardware.

3.1. Add Objects

Connecting objects via ports will form a
system model. A new object can add to
the system. Fig.3 shows a new object
buffer is added to producer/customer sys-
tem. Buffer can store 10 products. Mes-
sage is transferred via ports. The model is
a producer/buffer/customer system. With
the help of object conception and port,
system can be extended easily and the net
structure is simpler than previous one [2].

Fig. 1: Add an object

3.2. Disassemble Object

To decompose objects is a similar issue
of Petri nets partition, which is a NP dif-
ficult problem. Many algorithms were
studied to solve this problem and the
work is still going on. In this section, at-
tention is paid on general stratagem to
partition Petri nets with sequence, parallel
and loop structures.

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 3

3.2.1. Sequence Structure Partition

General speaking, OPN with sequence
structure could be separate at any arc and
form two object subnets, fig.4 (a). The
places or transitions connected with the
arcs will change into ports. But granular-
ity should be considered while partition-
ing. Coarse granularity is anyhow better
than fine granularity at system level mod-
els because it is easy to understand and
describe. Fine granularity partition will
produce too many object subnets, which
needs a lot of ports for communication.
Although one place or transition can be
regarded as an object, we do not suggest
partitioning it into an object because an
object should contain attribute and
method.

Fig. 1: OPN Partition

3.2.2. Parallel Structure Partition

Tasks assigned to hardware run in paral-
lel on RC systems. System performance
mainly depends on the parallel task parti-
tion. Therefore, Parallel tasks should be
partition into the same object subnet so
that the tasks could be mapping to hard-
ware in next stage, see fig.4 (b), where t2,
t3 are parallel tasks.

3.2.3. Loop Structure Partition

Loop tasks usually spend many CPU
cycles. Therefore, they are assigned to
hardware in RC systems and should be
partitioned into one object, which will

reduce the communication and resource
consumption, see fig.4 (c).

4. Objects Realized by Software

Objects in OPN will be finally mapped to
hardware or software of RC systems. Ob-
jects mapped to software finally realized
by a segment of code, while objects
mapped to hardware finally realized by
logic circuits usually designed by hard-
ware description language. Code will run
on general processor of RC system and
logic circuits will be completed by recon-
figurable devices.

4.1. Objects Realized by Software

Objects related with control flow may be
map to software. Objects containing few
computing tasks could also be mapped to
software. Many program languages are
competent for designing objects. C++ is
chosen because it is object oriented lan-
guage and widely used. The object buffer
in fig.3 is designed in C++ as below.
Class：Buffer
Public: p32=0, p36=1;
Private: p31=10, p33=0, p34=0, p35=0;
Method:
If(p32>=1)&(p31>=1)

p34+1,p32-1,p31-1;
endif//t31
If(p34>=1)

p34-1,p35+1,p5+1;
endif//t32
If(p35>=1)&(p36>=1)

p33+1,p35-1,p36-1;endif//t33
If(p33>=1)

p31+1,p4+1,p33-1;
endif//t34

4.2. Objects Realized by Hardware

Objects containing intensive computing
tasks may be map to hardware in order to
get high computing speed. Verilog hard-
ware description language is used to de-

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 4

sign the hardware objects. An example of
multiply-add unit for matrix multiplier is
showed below. The corresponding OPN
showed in fig. 5, where data places are
represented by ellipses.

Fig. 1: OPN of multiply-add unit
module M_Adder (p1,p2,p3, p5,p6) ;

input p1,p2,p3;output p5, p6;

reg p4,p5, p6;

always @ p3

begin

p4 =p1*p2 ;

p6 =p6+p4;

p5 =1;

end
endmodule

5. Summary

A object oriented Petri net was proposed
for describing RC systems, which is
modular, reusable and have the ability to
process data flows and mutual actions.
The proposed OPN is practical to model
RC systems because objects could be as-
semble and disassemble easily. A frame-

work of describing RC systems by OPN
model and mapping objects to hardware
or software was proposed as well. To
analyze the runtime and resource con-
sumption of RC systems by OPN model
will be studied in the future work.

6. References

[1] T.J. Todman, G.A. Constantinides,
S.J.E. Wilton, O. Mencer, W. Luk and
P.Y.K. Cheung. Reconfigurable com-
puting: architectures and design
methods. IEE Proc. Comput. Digit.
Tech., Vol. 152, No. 2, March 2005,
193-207

[2] Y.K. Lee, S.J. Park, OPNets: an ob-
ject-oriented high-level Petri net
model for real-time system modeling,
Journal of Systems Software 20 (99)
(1993) 69– 86.

[3] C. Sibertin-Blane, R. Bastide, Object-
oriented Structure for High Level
Petri Nets, 11th Conference of Appli-
cation and Theory of Petri Nets, Tou-
louse, France, 1990.

[4] K. Jensen, Coloured Petri nets: A high
level for System Design and Analysis,
in Advances in Petri nets 1990, Lec-
ture Notes in Computer Sci-
ence,Vol.2483,pp.343-416, Springer-
Verlag, 1991.

[5] Hao Kegang, Open nets-model for
mutual concurrent systems. J. of
Northwest Univrsity. Vol.27, No.6,
1997.

[6] Chun-Che Huanga, Wen Yau Li-
ang.Object-oriented development of
the embedded system based on Petri-
nets. Computer Standards & Inter-
faces 26 (2004) 187–203

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 5

