
A Software Dependability Growth Model
based on Self-Reconfiguration

Qian Zhao1 HuiQiang Wang1 HongWu Lv1 Guangsheng Feng1
1College of Computer Science and Technology, Harbin Engineering University, Harbin

150001, China

Abstract

With wide application of computers,
software quality attracts people`s atten-
tion. Traditional software dependability
theory can’t satisfy people`s requirement,
which need induct new idea to resolve the
serious software quality crisis. This paper
uses self-reconfiguration mechanism of
Autonomic Computing to handle prob-
lems of software dependability. Senior
and Junior Self-Reconfiguration Method
are defined in this paper. A software de-
pendability growth model based on self-
reconfiguration (SDGMSR) is established,
which is analyzed by means of Markov
Regenerative Stochastic Petri Net
(MRSPN). Experimental results show
that our approach can improve software
dependability and reduce software main-
tenance cost more effectively while
chooses a proper self-reconfiguration pe-
riod.

Keywords: Autonomic Computing,
Self- reconfiguration, Software Depend-
ability, MRSPN

1. Introduction

With the application of computers in all
fields, softwares have penetrated many
crucial departments, such as bank,
national defence and military affairs,
which results in human relying on them
unprecedentedly. However, the quality of
software have not made people satisfied,
morover, the management and maintence

of running dependable becauses more and
more dificult. The theories and technics
of software security are unwieldy and
difficult to meet actual application
requements. An atonamic , flexible and
fine-grained management method is
expected to resolve the problem of
software undependability.

Autonomic Computing, considered as
a new method for settling the self-
management of heterogeneous computing
systems, has become an international
research focus. Development software
dependability growth model based on
autonomic computing can cause
qualitative changes of current research
and design in software dependability.

The main idea this paper is using the
self-reconfiguration of Autonomic
computing to realize the software
dependability oriented self-management
mechanism, reduce human intervention
and improve software dependability
dynamicly, which provide a noval
method for software dependability study.

2. Related works

Dependability is researched more than 60
years which results in many achievements,
which accelerate the development of
software dependability. Measurement-
based dependability analysis of opera-
tional software has a history of over 20
years[1].With the development of system
dependability and universality of soft-
ware application, software dependability

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 1

is researched widely, and research results
are exerted in many fields.

In theory aspect, Bev Littlewood [2]
outlines specific difficulties in applying a
sound engineering approach to software
reliability engineering, and establishes a
certain foundation for development of
system dependability. System depend-
ability is analyzed in detail from the view
of software failure in [3]. It defines basic
error characteristics and relation between
software error and hardware in [4]. Mul-
tivariate State Estimation Technique is
used to enhance the software dependabil-
ity by Sun Microsystems Inc. and Univer-
sity of Maryland in [5], their results sug-
gest that they can cheaply and reliably
predict impending runtime failures and
respond to them in time to improve the
system`s dependability. Arup Mukherjee
[6] measures software dependability from
the view of software robustness, and clas-
sifies as well as compares the software
faults. Software dependability attributes
are classified in detail, which provides
reference for research of software de-
pendability attributes [7]. Chen pointes the
state of art of its engineering technologies
for high confidence software and the
challenges it faced and the importance of
formalization [8]. Hong MEI proposes a
realization method through dependable
structure and reflective middleware [9].

In project aspect, DARPA、NSF、
NASA、NSA、NIST、FAA、FDA and
DoD have participated in the research of
software dependability and high confi-
dence software. NSTC proposes a serious
reports. Computer science and engineer-
ing department of Technische Universität
Darmstadt has research content about
Trusted Project in Databases and Distrib-
uted Systems Group project.

This paper uses self-reconfiguration
mechanism for reference and researches
how to dynamically change considering
exterior environment and application de-
mand, and make out proper reflection au-

tomatically according to dependable de-
mand. MRSPN is used to analyze the
software dependability growth model
based on self-reconfiguration (SDGMSR).
Related parameters of software self-
reconfiguration are optimized in this pa-
per, which aims at using software trans-
parently.

3. Software Dependability Growth
Model based on Self-
Reconfiguration

Symbol Definition:
 t is time；
  is threshold value of time;
 f is failure proportion of components,

whose threshold value is F;
 v is predictive value of software auto-

nomic dependability, whose thresh-
old value is V;

 R(t)is inside and outside rules at time
t, which is get by self-reflection
component；


pr_sR is rule in senior self-

reconfiguration database；


unpr_sR is rule in junior self-

reconfiguration database；


pr_sA is action according to rule in sen-

ior self-reconfiguration database；


unpr_sA is action according to rule in ju-

nior self-reconfiguration database；
 Action Definition：


i jR R denotes rule matching；


i jR R denotes rule mismatching;

 R A denotes getting action A ac-
cording to rule R;

  denotes strategy optimization；
  denotes addition new strategy；
To realizing self-reconfiguration with-

out human interference, rule-action strat-
egy is inducted in this paper
3.1. Self-reconfiguration Method

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 2

To improving the effective of self-
reconfiguration and satisfying the re-
quirement of software dependability
growth, rule in senior self-reconfiguration
database will be optimized if rule does
not match, which is called rule in junior
self-reconfiguration database. Rule in
junior self-reconfiguration database can
become senior during information feed-
back and test of software.

The definitions of senior and junior
self-reconfiguration shows as follow:
Definition1 (Senior Self-Reconfiguration,
SSR): Rules apperceived by Self-
reflection component in current time is
matched with SSR. If rule matching, the
strategy is sprung and the action of strat-
egy will be executed.

0t  , if
pr_s()R t R , then

pr_s pr_sR A ，

put strategy in practice.
Accomplishment of SSR strategy is

show in Fig.1.

Fig.1. Senior Self-Reconfiguration Method

Definition2 (Junior Self-Reconfiguration,
JSR): Rules apperceived by Self-
reflection component in current time is
not matched with SSR and the action ac-
cording to rule can not be executed. If
satisfying require of software dependabil-
ity growth, dynamic extension of self-
reconfiguration database must be added
new rule-action strategy.

0t  , + +k Z Z(0), a  ,if
pr_s() R t R

let k=0,
 pr_s pr_s unpr_s unpr_s() & () k k+1R A R t R A    

put strategy in practice

 if k a ，then unpr_s pr_sA A 。

Accomplishment of JSR strategy is
show in Fig.2.

Fig.2. Junior Self-Reconfiguration Method

3.2. Software Dependability Growth
Model

SDGMSR is show in Fig.3. ：

Fig.3. Software Dependability Growth Model
based on Self-Reconfiguration

Self-Reflection Component extracts
parameters values from inside and outside
environment and provides them to Self-
Reconfiguration Component. Self-
Reconfiguration Component judges
whether they need reconfigure or not, for
example preestablished time or prior thre-
shold value of predictive value of soft-
ware autonomic dependability. If Self-
Reconfiguration is needed, Self-
Reconfiguration Component compares
the collected rule with the rule in SSR
Database, if they match with each other,
run the according action through Control
Component; if they don`t match, find the
rule in JSR Database. If there exists
matching rule, runs the according action
through Control Component and records
using condition of the rule; if does not,
produces a new rule-action strategy ac-
cording optimization algorithm and re-
cord the new rule-action strategy into JSR
Database. If rule-action strategy in JSR
Database satisfies given condition, such
as using times of strategy id more than a
threshold value, it will be deleted from
JSR Database and stored in SSR Data-
base.

4. Performance Analysis of SDGMSR
based on MRSPN

Because time interval of SDGMSR may
be certain, software will not be a Markov

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 3

chain, which made Continue Markov
chain theory not fit for the analysis. A
non- Markov theory MRSPN is used in
this paper for analysis.

For a MRSPN model, corresponding
stochastic processes is (; 0)tX X t  ，

there
tX is software state in t, and the state

space is Ω. Sample in stochastic proc-
esses X, regenerative state set

` { , 0} (`)nX n      ，sampled re-

generative time point is 1,2, ,n n  （ and

1 2 3    ）.{ ; 0, 1,2, }n nX n    is

embedded Markov chin[10,11].
4.1. MRSPN Model

Model of SDGMSR based on MRSPN
shows in Fig.5. In the figure, the circles
represent places with dots inside repre-
senting the tokens held inside that place.
Filled rectangle denotes constant transi-
tion and empty rectangles denote EXP
transition.

The normal service state is modeled by
the place Pup. Transition Tfail models the
degradation of software dependability.
When Tfail is fired, software may come
into place Pfail, which models the failure
state of software. Transition Tcrash models
software crash aroused by software fault,
which made software come into Pcrash
place. The crashed software restarts and
comes into normal service state, which is
modeled by Trun. Tsti（i=1,2） models
software self-reconfiguration operation to
improving system dependability. Tst1

modules JSR operation and Tst2 modules
SSR one. After a confirmed time , Tpe-

riod is executed. Token in Pperiod comes into
place PST. Whenever the token is in Prun
or Pfail, Tst1 or Tst2 must be executed and
clock must be reset. PSA models self-
reflection. During the self-reconfiguration
phase, every other activity in the system
is suspended. This is modeled by inhibi-
tor arcs from place PST to transitions Tfail
and Tdown. Tfail, Tst1, Tst2, Tcrash and Trun in
Fig.5 are EXP transitions and the transi-

tion rates are
1 2 3 4, , ,    and

 5 ，let be

the firing time associated with Tperiod.

Fig.5. Model of SDGMSR based on MRSPN
4.2. Analysis of MRSPN Model

Because PSA produces data real-timely,
model of SDGMSR based on MRSPN
can be predigested and denoted by 5-
tuple(Prun，Pfail，Pcrash，PST，Pperiod）.
Fig. 6 shows the reachability graph with
ovals representing the markings and arcs
representing possible transitions between
the markings. From Fig. 6, there are 5
markings are possible viz（10010），

（01010），（10001），（00110），

（01001），and be represented by M1、

M2、M3、M4 and M5. The state space of
MRGP is

1 2 3 4 5{M M M M M }  ， ， ， ， .

Fig.6. Reachability Graph for SDGMSR based
on MRSPN

From the actual connection and transi-
tion of model, the state of software is de-
termined uniquely by the current state if
coming into M1、M3、M4 or M5. Once
state comes into M2, next state is still de-
cided by many factors and may be state
M4 , M5 or M1. So, state space of the un-
derlying MRGP is *

1 3 4 5{M M M M }  ， ， ， 。
The stats transition matrix is K(t).

EMiMj(t) describes the behavior of the
marking process Mi inside two consecu-
tive regeneration time points.

M1M3 M1M4 M1M5

M3M1

M4M1

M5M1

0 () () ()

() 0 0 0
K()

() 0 0 0

() 0 0 0

K t K t K t

K t
t

K t

K t

 
 
 
 
 
 

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 4

  1
M1M3 1 3 0 1() X =M t X =M ()K t e u t     ，

where, u(t) is unit-step function.

1

1

M1M 4 1 4 0 1

2

2

1 2

1 2 1 2

1 2

1 2 1 2

() {X , | X }

1 0 t

1 t

t t

K t M t M

e e

e e

 

   



 
   

 
   





 

 

  


 

 

   

   






M1M5 1 5 0 1

2 11

1 2

1111111

() {X , | X }

[] ()
-

K t M t M

e e u t   



 
 

 

 

  



1 11 i 0

111111111 1

,

11

{X | X }()

1 (3, 4, 5)i

M iM

t

M t MK t

e i




 





 



1 1 1 2

3 3

4 4

5 5

() () 0 0 0

0 0 () 0 0
()

0 0 0 () 0

0 0 0 0 ()

M M M M

M M

M M

M M

E t E t

E t
t

E t

E t

 
 
 
 
 
 

E

1

1

1 1 1 1 0 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

() { , | }

[1 (1)] [() ()]

[() ()]

M M

t

t

E t P X M t X M

e u t u t

e u t u t















   

     

   

2 1

1 2 1 3 1 4 1 5 1 1

1

1 2

1111111

() 1 [(() () ()] ()

()[() ()]

M M M M M M M M M M

t t

E t K t K t K t E t

e e u t u t  
 

 

    

   


() 1 (1) , 3, 4,5i it t
MiMiE t e e i      
It can get steady state probabilities of

software according the transient state
probabilities.

0
() ()ij ijE t d t


 

lim ()
t

K t


 

   

k kj

k
j

k kl
k l

v

v







 



 

From the actual SDGMSR, software is
available in state M1 and M2. The avail-
ability of software is denoted as SA.

1 2

1 2 3 4 5
AS

 
    




   
Let CC be the fixed cost per unit time

when the software is crashed and CST be
the fixed cost per unit time when it has
self- reconfiguration. C is a random vari-
able denoting the cost incurred, then, the
expected total cost incurred in the interval
[0,) is E[C] .

3 4 5() ST CC C C    

3 4 5[] [()]ST CE C C C     

5. Simulation Experiment Result

Table1：Parameter Values
参数 值
1/λ1 240hours
1/λ2 2160hours
1/λ3 3 minutes
1/λ4 5 minutes
1/λ5 2second
CC 5000＄/hour

One hand much frequent software self-
reconfiguration will exhaust system re-
source and affect the usage of users, the
other hand , if software always runs on an
environment with failure, which made
software crashed and also affect the usage
of users. The selection of  value is very
important for SDGMSR and ensures
software from out of service and crash.
In the view of the overall trend of soft-
ware availability, with  growth, it will
increase firstly, and then decrease, which
show in Fig.7. If    , no self-
reconfiguration, the expected cost
is a function of CST only and hence all
graphs approach the same value; if 0  ,
the software is always in self-
reconfiguration operation and the cost
incurred is infinite

Fig.7. Relationship between software avail-
ability and 

Fig.8. Relationship between Cost and 

6. Conclusions and Future Works

This paper uses self-reconfiguration me-

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 5

chanism of Autonomic Computing and
handles problems of software dependabil-
ity through dynamic capturing resources
inside and outside environment. Accord-
ing to prior predictive value of software
dependability or relative threshold value,
SDGMSR uses rule-action strategy of
SSR or JSR to instruct the actions of
Control Component and adjusts the enti-
ties of software, which made the growth
of software dependability. At last,
MRSPN is used to analyze SDGMSR. In
accordance with the result of simulation
testing, SDGMSR can be used to conduct
the growth of software dependability, and
is an effective method to handle problem
of software quality.

In the future, the prior predictive algo-
rithm of software dependability and rela-
tive threshold value should be work out.
Optimization algorithm of self-
reconfiguration strategy is also the hot
point of the work team.

7. References

[1] R.K. Iyer and D. Tang, “Measure-
ment- Based Dependability Evalua-
tion of Operational Computer Sys-
tems,” Foundations of' Dependable
Computing: Models and Frameworks
for Dependable Systems, Academic
Publishers,Boston, pp. 195-234, 1994.

[2] Bev Littlewood and Lorenzo Strigini,
“Software Reliability and Depend-
ability: a Roadmap”, Proc. Of the
Conference on The Future of Soft-
ware Engineering, Limerick, Ireland ,
pp. 175 - 188 , 2000.

[3] Inhwan Lee and R. K. Iyer, “Software
Dependability in the Tandem
GUARDIAN System,” IEEE Trans-
action on Software engineering, Vol.
21, No. 5, pp. 455-467, 1995.

[4] D. Tang and R.K. Iyer, “Analysis of
the VAWVMS Error Logs in Multi-
computer Environments-A Case
Study of Software Dependability,”

Proc. Of the Conference on Third In-
ternational Symposium of Software
Reliability Engineering, pp.216-226,
1992.

[5] Kenny C. Gross, Aleksey Urmanov,
Lawrence G. Votta, Scott McMaster
and Adam Porter, “Towards Depend-
ability in Everyday Software Using
Software Telemetry,” Proc. Of the
Third IEEE International Workshop
on Engineering of Autonomic & Au-
tonomous Systems, pp. 9-18, 2006.

[6] A. Mukherjee and D.P. Siewiorek,
“Measuring Software Dependability
by Robustness Benchmarking,” IEEE
Transactions on Software Engineer-
ing,, pp. 366-378, 1997.

[7] Hecht, H., “A Proposal for Standard-
ized Software Dependability Data”.
Proc. Of the Second IEEE Interna-
tional Conference of Software Engi-
neering Standards Symposium,
pp.235-243, 1995.

[8] CHEN Huo-wang, WANG Ji and
Dong Wei, “High Confidence Soft-
wareEngineering Technologies, ”AC-
TA ELECTRONICA SINICA, pp.
1933-938, 2003.

[9] Hong MEI，Gang HUANG and Wei-
TekTsai, “Towards Self-Healing Sys-
tems via Dependable Architecture
and Reflective Middleware,” Proc. Of
the 10th IEEE International Work-
shop on O.O. Real-Time Dependable
Systems, pp.337- 344, 2005.

[10] Choi J, “Performance and Reli-
ability Modeling Using Markov Re-
generative Stochastic Petri Nets,”
Duke Univ. , Durham N. C., 1993.

[11] S. Garg, A. Puliafito, M. Telek
and K.S. Trivedi, “Analysis of Soft-
ware Rejuvenation using Markov Re-
generative,” Proc. Of the Sixth Inter-
national Symposium on Software Re-
liability Engineering, pp.24-27, 1995.

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 6

