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Abstract. By means of the extended mapping method, the traveling wave solution for the variable 
nonlinear Klein-Gordon equation is investigated, which is obtained in terms of the Jacobi elliptic 
functions. The hyperbolic function solutions and trigonal solutions are also obtained. The numerical 
simulations are attached. At the same time, the physical meanings of the obtained solutions are 
discussed, and the problem needed to further study is pointed out. 

Introduction 

The characteristics of nonlinear phenomena in various physics fields can be mathematically 
described by nonlinear evolution equations. Among them of great physical significance are the 
equations that possess soliton solutions. The nonlinear Klein-Gordon equation generalizes the linear 
relativistic equation for a charged particle in an electromagnetic field derived by Klein [1] and 
Gordon [2]. In nuclear and high energy physics the study of exact solution of the Klein-Gordon 
equation (KGE) is of high importance for mixed scalar and vector potentials, which is also as a model 
for a self-interacting, nonlinear scalar field in quantum field physics. The stability of periodic 
traveling wave solutions to the nonlinear KGE has been investigated by many researchers using 
various techniques and under different perspectives[3-8]. 

Generally, the extended mapping nonlinear KGE is read as 
                                                                          (1)  

where the subscripts denote the partial derivates of x and t, the potential V is a real function. The 
potentials are important in the theory of the Klein-Gordon equation, which are applied in magnetic 
fluid theory[9], nonlinear meson theory[10], solid state physics[11], and in classical sine-Gordon and 

-field theories[12]. For polynomial potentials V , Chicone's theory is particularly convenient to 
apply to determine whether a family of librational orbits that surround a stable fixed point. One may 
consider cubic nonlinearities arising from a quartic double-well potential: 

                                                                                (2) 
Then, the variable nonlinear Klein-Gordon equation is rewritten 

                                                                    (3) 
where κ , α and β are nonzero constant parameter, u represents a real scalar function u(x,t). The 

remaining structure of this Letter is organized as follows: Section 2 is a brief introduction to the 
Jacobi elliptic function and its Properties. In Section 3, by implementing the Jacobi elliptic function 
method, some new traveling wave solutions for nonlinear KGE are reported. A conclusion and future 
directions for research are all summarized in the last section.  
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The Jacobi elliptic function and its Properties 
Consider a general nonlinear partial differential equation with independent variables x and t in the 

form 
                                                     (4)  

By using the wave variable ε = x + wt carries eq.(3) into the following ordinary differential 
equation 

                                                                (5) 
where ,... denotes the derivative with respect to the same variable ε. 
Generally, the scalar function u in terms of perturbation method can be expressed as 

                                                         (6) 
where p and q are Jacobi elliptic functions about x and t; Ki, Si are constant parameters; n is fixed 

by balancing the linear term of the highest order derivative with nonlinear term. p and q satisfy the 
following equation 

  
where f, g and ai(i = 1,2, 3, 4) are to be determined parameters. 
The Jacobi elliptic functions have the properties[13-17]: 

 

 
 

 
 

where m(0 < m < 1) is the modulus of the elliptic function. The modulus substantially affects the 
Jacobi elliptic solutions, which will asymptotically go into hyperbolic functions and trigonometric 
functions when the modulus m 1 and m 0, respectively. 
 

 

Jacobi elliptic function solutions to nonlinear Klein-Gordon equation 

Consider the nonlinear Klein-Gordon equation in the form of eq.(3) with ε = x + wt, we obtain 
                                                  (12) 

By selecting n to balance the derivative term of the highest order and nonlinear term, we have n = 1 
obtained from eq.(12). Then, Eq. (6) reduced as 

                                                            (13) 
Substituting eq.(13),(7)-(9) into the equation (12), collecting all terms with the same power of pq 

together and equating each coeffcient to zero, yields a set of simultaneous algebraic equations as 
follows: 

（7） 
 
（8） 
 
（9） 

（10） 
 
 

（11） 
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Solving the algebraic equations, we get the results: 
Case 1    and , we have 

 
Using eq.(13), p = cn(ε;m) and q = dn(ε;m), the traveling wave solution for eq.(3) is given as 

                                                            (15) 
where ε = x + wt, the numerical simulation for plus sign with m = 0.1 and t = -50, 0, 50 are shown in 

Fig.1. The numerical simulation for plus sign of eq. (15) with  p = 1/dn(ε;m),  q = sn(ε;m)/dn(ε;m),  
 m = 0:1 and t = -50, 0, 50 are shown in Fig.2.  
When p = sn(ε;m), q = cn(ε;m), m = 0.0000000001, the solution eq.(15) degenerates to the 

trigonometry functions: 
                                                                  (16) 

The numerical simulation for plus sign of eq.(16) with t = -50,0, 50 are shown in Fig.3. 
When p = sn(ε;m), q = cn(ε;m), m = 0.9999999999, the solution eq.(15) degenerates to the 

hyperbolic function: 
                                                           (17) 

The numerical simulation for plus sign of eq.(17) with t = -50,0, 50 are shown in Fig.4. 

   
 
    Case 2      and ,  we have 

 
   Using eq.(13), q = cn(ε,m), the traveling wave solution for eq.(3) is given as 

                                             (18) 
where ε = x + wt, the numerical simulation for plus sign of eq.(15) with m = 0.1 and t = -50, 0, 50 

are shown in Fig.5. The numerical simulation for plus sign of eq.(15) with q = dn(ε,m), m = 0.1 and t 
= -50, 0, 50 are shown in Fig.6. 

All the numerical simulations are given with c1 = -3m2, c2 = 2m2 + 1, c3 = -4m2-4, c4 = m2 + 1, α = 
3, β= -4, · κ= 5, w = 0.02, f = 2m2 - 1, g = -2m2, r = 1 - m2, x∈ [-7.5, 10], all the figures are obtained in 
the plot form with the aid of Origin software. 

 
 

（14） 
 

 

Fig.1  m=0.1  Fig.2 m=0.1 
 

Fig.3 m=0.0000000001 
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Conclusions 
The variable nonlinear Klein-Gordon equation in the form eq.(3) have been further studied by 

means of the extended mapping Jacobi elliptic function method. A variety of periodic waves 
solutions (15)-(19) of eq.(3) are obtained in terms of Jacobi elliptic functions, trigonometric solutions 
and hyperbolic solutions, which can be employed to discuss some interest physical phenomena. The 
performance of Jacobi elliptic functions method is reliable and effective, which gives more solutions. 
A modified Klein-Gordon equation appears for instance in the study of long Josephson junctions 
between superconductors when dissipative effects are taken into account.  
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