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Abstract.Multi-depot vehicle routing problem is a NP-hard combinatorial optimization problem. In 
this paper, we proposed an improved genetic algorithm (GA), which combined GA with fitness-
scaling and local search. The experiments compared the proposed approach with standard GA, 
simulated annealing, Tabu search, and particle swarm optimization. The results showed that the 
proposed method was superior to GA, SA, TS, and PSO, w.r.t. solution accuracy. 

Introduction 
The Vehicle Routing Problem (VRP) is a whole class of problems that optimize the cost of product 
delivery by vehicles from depots to customers under certain constraints [1, 2]. In this study, we 
focus on the Multiple Depot VRP (MDVRP). 

The VRP falls within the NP-hard problem. At present, there are two schools of methods. One is 
the integer programming based methods, which can obtain global optimal solutions with 
exponentially increasing computation time. Therefore, those methods are infeasible. The other is 
heuristics-based methods, approximate solutions are found fast enough and sufficiently accurate. 
Recent reports show that Genetic Algorithm (GA) [3], Simulated Annealing (SA) [4], Tabu search 
(TS) [5], Particle Swarm Optimization (PSO) [6] can be used to solve VRP. However, the 
performance of pure SA is not satisfactory [7], the performance of pure TS is generally neither 
satisfactory nor competitive [8-10]. The discrete version of PSO performs far behind the basic ant 
colony algorithm [11, 12]. 

In this paper, we proposed an improved GA (IGA) method that combines the advantages of the 
fitness-scaling mechanism and 2-opt local search movement. The paper aims at improving the 
solution accuracy. 

Problem Definition 
Suppose S represents the number of depots, and   the index set of depots index 
 {1,2,..., }S=.  (1) 
and suppose U is the number of customers, and   the index set of customers 
 {1,2,..., }U=  (2) 

The node index set   is the combination of the sets of depots and customers 
 {1,2,..., }S U= ∪ = +  .  (3) 
where a node is either a depot or a customer. 
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Each depot stores and supplies various products. Suppose T denotes the total number of types of 
products, and   the product index set 
 {1,2,..., }T=  (4) 

Suppose Qi is the total number of vehicles stationed in depot i, we can define i  the index set of 
vehicles stationed in depot i 
 {1,2,..., }i iQ=  (5) 

The mathematical formula of MDVRP is written as 
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where xikmn is a binary variable with 1 representing vehicle k serving depot i visits node n after node 
m, and 0 otherwise. cmn is the distance between node m and node n. In addition, MDVRP is subject 
to following 6 criteria: 
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where djm is the demand of product j for node m, and sij is the supply of product j from depot i. The 
supply of each type of product from the depot should not be less than the corresponding demand 
from customers served by all vehicles in the same depot.  
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where eik denotes the capacity of vehicle k serving depot i. The total volume of different products 
requested by customers served by the same vehicle should not be more than the capacity of the 
same vehicle. 
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which requires each customer should be served once and only one vehicle. 
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which requires that any vehicle entered a customer should leave from the same customer. 
 1, , 2, ,ikmn k k k i

m n
x i k

∈ ∈

≤ − ∀ ⊆ ≥ ∀ ∈ ∀ ∈∑∑
 

  −     (C.5) 

where k  denotes the set of customers visited by vehicle k. 
 {0,1}, , , ,ikmn ix i k m n∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ 0    (C.6) 
which requires the value of the decision variable should be binary. 

Methodology 
Fitness scaling converts the raw fitness values to a range suitable for better selection. Power-rank 
fitness scaling strategy [13, 14] is selected. Afterwards, 2-opt is an intra-route movement to improve 
the solutions. It consists of replacing two non-adjacent arcs belonging to the route by two other arcs 
not belonging to it, by which the connectivity of the route is re-established [15].  

Based on aforementioned description, we proposed the IGA, which combined standard GA with 
fitness-scaling and local search. 

Experiments and Results 
The Cordeau dataset contains 33 benchmark problems. We compared the proposed IGA with 
standard GA, SA, TS, and PSO. For each problem, each algorithm was conducted 50 times. The 
best results among 50 runs were recorded. The parameters are obtained by trial-and-error method. 
The results are evaluated by the best (minimum) objective value fbest, and the percentage deviation 
(PD) defined as 
 100%best KB

D
KB

f f
P

f
−
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where fKB represents the known-best objective value, which can be downloaded from the homepage 
of the Cordeau dataset. Table 1 reports the best (minimum) results and its deviation in terms of 
percentage by all algorithms for all benchmark problems. 
 

Table 1 Algorithm comparison among 50 runs 
Instance GA SA TS PSO IGA 
p01 0.0000 0.0000 0.0093 0.0000 0.0000 
p02 0.0000 0.0000 0.0000 0.0000 0.0000 
p03 0.0000 0.0000 0.0264 0.0000 0.0000 
p04 0.0000 0.0000 0.0000 0.0000 0.0000 
p05 0.0000 0.0000 0.0000 0.0000 0.0000 
p06 0.0000 0.0000 0.0000 0.0000 0.0000 
p07 0.0000 0.0000 0.0000 0.0000 0.0000 
p08 0.0000 0.0000 0.0000 0.0000 0.0000 
p09 0.0136 0.0000 0.0202 0.0000 0.0000 
p10 0.0000 0.0000 0.0000 0.0265 0.0000 
p11 0.0600 0.0000 0.0000 0.0290 0.0000 
p12 0.0000 0.0000 0.0000 0.0000 0.0000 
p13 0.0000 0.0000 0.0000 0.0000 0.0000 
p14 0.0000 0.0000 0.0000 0.0000 0.0000 
p15 0.0102 0.0127 0.0000 0.0000 0.0000 
p16 0.0124 0.0000 0.0315 0.0127 0.0050 
p17 0.0098 0.0265 0.0282 0.0176 0.0000 
p18 0.0000 0.0292 0.0100 0.0229 0.0000 
p19 0.0491 0.0000 0.0000 0.0000 0.0401 
p20 0.0356 0.0073 0.0000 0.0433 0.0273 
p21 0.0271 0.0211 0.1493 0.0293 0.0227 
p22 0.0698 0.0651 0.0686 0.0483 0.1034 
p23 0.0045 0.1136 0.0208 0.1363 0.0142 
pr01 0.0020 0.0000 0.0000 0.0000 0.0000 
pr02 0.0000 0.0000 0.0000 0.0000 0.0000 
pr03 0.0000 0.0000 0.0000 0.0000 0.0000 
pr04 0.0000 0.0000 0.0000 0.0000 0.0000 
pr05 0.0000 0.0220 0.0410 0.0303 0.0000 
pr06 0.0503 0.0413 0.0000 0.0000 0.0283 
pr07 0.0000 0.0152 0.0165 0.0000 0.0071 
pr08 0.0593 0.0357 0.0000 0.0000 0.0000 
pr09 0.0000 0.0450 0.0000 0.0311 0.0000 
pr10 0.0000 0.0000 0.0698 0.0554 0.0219 

 
Results indicated that the proposed IGA method performed the best. It reached the known-best 

solutions in 24 instances and failed in only 9 instances. In addition, standard GA performed the 
worst and it won only 20 instances and failed in 13 instances. SA, TS, and PSO won 21 instances 
and failed in 12 instances. 

Conclusions 
In this paper, we proposed an improved GA algorithm in order to solve MDVRP. Thirty-three 
benchmark problems were used to test the performance of the proposed algorithm. The results 
showed the superiority of the proposed IGA algorithm to other methods. 
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