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Abstract. A DNA genetic optimization bat algorithm based fractionally spaced multi-modulus blind 
equalization algorithm (DNA-GBA-FS-MMA) is proposed. This proposed algorithm uses 
fractionally spaced equalizer(FSE) with ability to oversample to input signals to get more channel 
information and compensate for channel with the depth spectrum zero, employs DNA genetic 
optimization bat algorithm(DNA-GBA) for searching the global optimal position vector, which are  
simultaneously regarded as the real and imaginary parts of the initial weight vector of 
multi-modulus blind equalization algorithm(MMA) in order to improve convergence speed and 
reduce mean square error(MSE). Simulation results show that DNA-GBA-FS-MMA has the best 
equalization effect. 

Introduction 
Multi-modulus blind equalization algorithm(MMA) can simultaneously carry out the function of 

blind equalization and carrier recovery in the absence of the carrier-recovery system[1]. 
Fractionally spaced equalizer(FS) combined with the MMA can reduce the mean square error (MSE) 
and the calculation load via oversampling to the input signals[2], but its convergence speed is still 
slow. DNA genetic algorithm(DNA-GA) uses DNA molecular operation to improve 
crossover, mutation, and selection operations of the genetic algorithm(GA), as well as strong global 
search ability, whereas the echo location characteristics of bat algorithm (BA) can avoid falling into 
local searching of the searching process and improve the success rate of searching global optimal 
position vector.  

In this paper, after we introduce DNA-GA into BA, a DNA genetic optimization bat algorithm 
based fractionally spaced multi-modulus blind equalization algorithm(DNA-GBA-FS-MMA) is 
proposed to search the global optimal position vector, which is used to optimize the weight vector 
of the MMA. Simulation results verify the effectiveness of DNA-GBA-FS-MMA algorithm. 

DNA Genetic Optimization Bat Algorithm Based Fractionally Spaced MMA 
When we introduce the DNA-GA into the BA, the DNA-GA based BA is called as DNA genetic 

optimization bat algorithm(DNA-GBA). When we introduce the DNA-GBA and the MMA into 
fractionally spaced equalizer, DNA genetic optimization bat algorithm based fractionally spaced 
multi-modulus blind equalization algorithm(DNA-GBA-FS-MMA) is obtained and shown in Figure 
1. Fig.1(a) is a principle of the fractionally spaced MMA(FS-MMA), Fig.1(b) corresponds to the 
MMA module in Fig.1(a).In the MMA module, the wR(k) and wI(k) are updated as follows: 
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where μ is the step-size, 0 ≤ μ ≤ 1. 
To simplify calculation and reduce the MSE, we introduce T/2 FSE into MMA to obtain more 

detailed channel information and compensate the fuzzy channels better. FSE based multi-modulus 
algorithm(FS-MMA) can decrease the MSE, but its convergence speed is still slow. 
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For the purpose of accelerating convergence speed and reducing the MSE, we use the BA to 
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Fig.1 DNA Genetic Optimization Bat Algorithm Based Fractionally Spaced Equalizer 
Multi-modulus Blind Equalization Algorithm 

search the global optimal position vector, which is served as the real and imaginary parts of the 
initial weight vector simultaneously. The velocity Vi(k) and position Xi(k) of the bat are updated as 

min max min( )if f f f β= + −                                                        (2) 
*( ) ( 1) [ ( ) ]i i i ik k k f= − + −V V X X                                                  (3) 

( ) ( 1) ( )i i ik k k= − +X X V                                                        (4) 
where β ∈ [0,1] and obeys uniform distribution. X* is the current global best position of the 

whole bat swarm. fi is frequency and is used to control the update of Vi(k). 
In local searching, once a position Xold  from the current best positions of all bats is selected, then 

the new position Xnew of the bat swarm is generated by a random walk from Xold [4]. 

( )new old A ke= +X X                                                            (5) 
where ε ∈[-1,1] is a random number, A(k) is average loudness of all bats. Xnew is used to replace 

Xi(k) to make the searching process go back to the global searching and avoid running into local 
optimal. 

During the searching process, bats emit ultrasonic with large loudness A and low frequentness r 
to find prey in broader area at beginning. Once they find their target, the loudness A will decrease 
and frequentness r will raise to search more precise. So we have 

( 1) ( )i ik kα+ =A A                                                             (6) 
( 1) (0)[1 exp( )]ir k r kγ+ = − −                                                     (7) 

where α and γ are loudness and frequentness attenuation coefficient, respectively. 
Frequentness and loudness change when best position changes. That means all bats move toward 
new best position. 

For improving efficiency of searching global optimal position, crossover and mutation operations 
of DNA-GA are used to optimize the searching process of the BA. The combination of the 
DNA-GA and the BA-FS-MMA can further improve the convergence speed, reduce the MSE, and 
make up for defects of the low searching efficiency and falling into local convergence of 
GA. DNA-GA has not only strong global searching ability, self-organizing, self-adaptive, and 
self-learning ability of the GA, but also its own unique advantages. It has 4 kinds of bases A, G, C, 
and T, which can be denoted by the four hexadecimal code such as 0,1,2, and 3. There are two 
complementary pairs such as A-T and C-G, which corresponds to 0-3 and 1-2 after encoding. This 
encoding increases the diversity of the population, solves the Hamming cliffs, and improves genetic 
operations. The object function of the DNA-GBA-FS-MMA is defined as 

2 2 2 2 2 2( ( )) {[ ( ) ] [ ( ) ] }i R R I IJ k E z k R z k R= − + −X                                         (8) 
where Xi(k) corresponds to wR(k) and wI(k) simultaneously in the MMA module, 

zR(k)=Xi(k)∙yR(k) and zI(k)=Xi(k)∙yI(k). Implementation steps of the DNA-GBA-FS-MMA are as 
follows: 

Step 1: Initial the parameters. Generate a random bat swarm, bat number n, frequency fi∈[ fmin , 
fmax], permutation crossover probability pz , translocation crossover probability py , maximum 
frequentness r(0), loudness attenuation coefficient α, frequentness attenuation coefficient γ, 
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maximum loudness A(0), and the position of each bat Xi. 
Step 2: Calculate the object function values according to Eq.8 and find their minimum, the 

position corresponding to minimum is the current global optimal position X*. 
Step 3: Generate new positions via adjusting frequency, updating velocities and positions[4] with 

Eq.4, then we obtain the updated positions Xi(k). 
Step 4: Compare the current frequentness ri  with a random rate rand1. If ri >rand1, a new 

position besides current optimal position is generated, local searching process returns to global 
searching. 

Step 5: Compare the current loudness Ai with a random loudness rand2. If Ai<rand2 and 
J(Xi(k))<J(X*), X* is replaced with Xi(k) and Ai and ri are updated by Eq.6 and Eq.7, respectively. 

Step 6: DNA base encoding. Each position of the bat swarm is encoded with the special DNA 
base encoding, then a group of position DNA sequences are obtained. 

Step 7: Permutation crossover. Two position DNA sequences which selected randomly are 
regarded as parent bodies. permutation crossover probability pz  is  compared with a random 
number rand3, if rand3<pz, two equal number bases sequences will be selected from each parent 
bodies to exchange, then two new position DNA sequences are generated to replace the parent 
bodies. 

Step 8: Transposition crossover. One position DNA sequence which selected randomly is 
regarded as parent body. Comparing translocation crossover probability py with a random number 
rand4, if rand4<py, a DNA sequence is cut down from the parent body and inserted in optional 
position of the rest parent body sequence. Then a new position DNA sequence is generated to 
replace the parent body. 

Step 9: Mutation operator. One position DNA sequence which selected randomly is regarded as 
parent body, a new position sequence is generate by replacing the base appearing most frequent 
with the base in lowest frequency to take the place of the parent body. 

Step 10: Decoding operator. To calculate the object function values and find the minimum, all 
position DNA sequences are decoded to a new group of position vectors. 

Step 11: Choose the current global optimal position X*. 
Step 12: Achieve the global optimal position. When reaching the the searching accuracy or 

maximum iteration number, the global optimal position X* is regarded as Xopt
*. Otherwise, the 

searching process turns to step 3. 
Step 13: Achieve the original weight vector. Xopt

* is used as the real and imaginary parts of the 
weight vector w(k), meanwhile. That is, wR(0)=wI(0)=Xopt

*. After updating wR(k) and wI(k) with 
Eq.1, then input signals of the two branch can be equalized more effectively. 

Test results 
To verify the performance of DNA-GBA-FS-MMA, the simulation tests were compared with 

MMA, FS-MMA, BA-MMA, DNA-GBA-MMA, and BA-FS-MMA. In simulations,  16QAM 
signals were transmitted, the step-size μMMA=μFSE-MMA =0.018, μBA-MMA=μDNA-GA-BA-MMA =0.0017, 
μBA-FSE-MMA=μDNA-GA-BA-FSE-MMA=0.003.The other parameters were given as foloows: n=20, A(0)=1.5, 
r(0)=0.25, fi∈[0,100], α=γ=0.9, pz=0.8, py=0.3, and channel c=[ 0.9556 -0.0906 0.0578 0.2368 ]. 
Simulation results are shown in Fig.2. Fig.2(a) is the curves of the MSE, Fig.2(b)~(g) are the output 
constellations of the MMA, the BA-MMA, the FS-MMA, the DNA-GBA-MMA, the BA-FS-MMA, 
and the DNA-GBA-FS-MMA. 
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Fig.2 Mean Square Error Curve and constellations 
From Fig.2, we can know that DNA-GBA-FS-MMA has the best equalization effect, the MSE 

reaches -24dB, and its constellations are the clearest and the most compact comparison with the 
MMA, the FS-MMA, the BA-MMA, the DNA-GBA-MMA, and the BA-FS-MMA. 

Conclusions 
A DNA genetic optimization bat algorithm based fractionally spaced equalizer multi- modulus 

blind equalization algorithm(DNA-GBA-FS-MMA) is proposed in this paper. This proposed 
algorithm can accelerate the convergence speed, reduce the MSE, and correct phase rotation. 
Therefore, the proposed DNA-GBA-FSE-MMA is feasible. 
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