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Abstract. An H!-Galerkin mixed finite element method (H*MFEM) is proposed and analyzed for
the fourth-order nonlinear Rosenau-Burgers equation. By introducing three auxiliary variables, the
first-order system of four equations is formulated. The fully discrete scheme is studied for problem
and optimal a priori error estimates for L? and H'-norms for the scalar unknown, first derivative,
second derivative and third derivative are obtained simultaneously.

Introduction

In this article, we consider the following fourth-order Rosenau-Burgers equations
U + U, —Uy, +U, +uu, =0,(x,t)e 2xJ,
u(0,t)=u(@,t)=0,u,(0,t)=u,(@Lt)=0ted, (1.1)
u(x,0)=u,(x),x € 2.

where Q=(01),J =(0,T]

Equation (1) is called as usual Rosenau-Burgers equation arises in some natural phenomena,
such as, in bore propagation and in water waves[1, 2, 3, 4, 5]. From the literature review, we can see
that many numerical schemes are analyzed. However, there is a limited study for finite element
methods of Rosenau-Burgers equation.

Pani [6] (in 1998) proposed the H'MFEM of the linear parabolic equation. Compared to standard
mixed methods, the proposed method has several attractive features. First, they do not satisfy the
LBB consistency condition. Second, the polynomial degrees of the finite element spaces Vy and Wy,
may be different. Recently, many researchers have studied H'MFEM for second-order partial
differential equations [7,8,9,10,11,12]. In 2012, Liu et al. [12] first proposed and studied the
H'MFEMs for fourth-order linear parabolic equation (u, +ku,, = f(x,t), 0<k € R). However, the

convergence of H'MFEM for fourth-order nonlinear Rosenau-Burgers has not been studied in the
literatures. In this paper, we will derive the fully discrete error analysis of the H'MFEM for
nonlinear Rosenau-Burgers equation.

Throughout this paper, C>0will be denoted as a generic constant which is free of the
space-time mesh parameter h and At.

H!-Galerkin mixed scheme and some lemmas

We introduce three auxiliary variables q=u,, v=q,, o=v, and reformulate the

Rosenau-Burgers equation (1.1) as the first-order system
q=u,,Vv=q, o=V,,U+q+uq-v+o, =0 (2.1)

Then a mixed weak formulation is to seek {u,v;q,c}:[0,T]— HjxH* satisfying
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(@) (U z)=(0,2,). Yz e Hg,
(b) (v,,0,)=(0,0,),Yo e H;, (2.2)
(c) (o )+, )=0.Yy e Hy,
(d) (@.4)- (o8 )=(a+ug-v.4,) Vg e H'.

With finite dimensional spaces (Vh,Wh)c(Hé,Hl), the mixed scheme for (2.2) is to seek
{U, v, 30,,0,1:[0,T] =V, xW, such that

(a) (Uhx’th)z(qh thx)'th eVy,
(b) (th ’Cohx)z (O'h ’a)hx)’va)h eVy, (2.3)
(C) (O-hvV/h)"'(qhxaV/hx):O'v'//h eW,,

(d) (th !¢h)_(o-hxt ’¢hx): (Qh + U,y _Vh7¢hx)7v¢h eW,.

For use in the error analysis, we introduce two important projections [6, 13].
Lemmal The elliptic projection y, eV, is defined by

(yx_yhx'ghx)zo’gh eV. (2.4)
Then the following error estimates are obtained
[y =%l <ch**y],...i=01. (2.5)
Lemma2 ARitz projection Z, €W, is defined by
Alz-Z,,w,)=0,w, eW,. (2.6)
where A(z,w)=(z,,w, )+A(z,w). Here A is chosen to satisfy

A(w,w) > po|w| ,we H 0 <, € R. Then the following error estimates

lz=z,|, <Ch™ ], |z - Z.], = Ch™* ]z, =01 (2.7)

r+1’ r+l’ J

can be found.

A priori error estimates for fully discrete scheme

Let 0=t, <t <t,<---<t, =T he a given partition of the time interval[0,T] with step length
t, =nAat,At=T/M, for some positive integer M. For a smooth function ¢ on [o,T], define
¢"=4(t,) and 34" =(g"—¢"")/ at.

Letun,Q"vrand z"respectively, be the approximations of u,q,vand cat t=t which we shall
define through the following scheme. Given " v"*;Q"*z"*} in v,xw, ,we now
determineu" v";Q",z"} in Vv, xw, satisfying

(a) (U;’th)=(Qn:th)vah eV,
(b) (\/X”,a)hx)z(Z",a)hx),Va)h ev,, (3.1)
©) @)+ (@ W )=0. Yy, €W,

@) Q"4 )-(0.2 ) =@ +U™Q" -V " 4, ) ¥4, €W,

For fully discrete error estimates, we now split the errors

u(t,)-U" = (u(t, )=, (6,)+ (0, (t,)-U")=n" +6" vlt,) -V " = (u(t,) -7, (t,)+ ( ( ) v ) " +0",

alt,)-Q" =(alt,)- @,(t,)+ @ t.)-Q")= p" +&", olt,)-2" = (ot,)- 5.t )+ (5. t,)-2")= 5

Using (3) and (21), we then obtain

(a) (g;’/l/hx): (Pnalhx)"' (é:nalhx)av?(h eV,
(b) (gg-a’hx):(5niwhx)+(7nva)hx)ivwh eV, (32)
©) (" )+ A"y )= (6", )+ A(E" + p" )V v, €W,
(@) (0.&" ¢ )- AB" 4 )= (00" + ", )~ A3,5" + 37", )+ (U"a" ~U™Q" . 4,,)
+(U"g" —U Q" g, ) (2" + 6.8, )+ (0" + £, ) V8, €W,
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where &"=q,(t,)-2,q(t,).
Theorem 1 Assume thatz®=g,(0) withg, =u,,. Then there exists a constantC >0 free of h
and At suchthat for 0<At<at, and j=01
o 0%, e v sl s o Q] o <22 sl )
Proof. Choosing y, =¢",0,=6" in (3.2a) and (3.2b), respectively, we use Cauchy-Schwarz
inequality, Young inequality and Poincare inequality to have

e <clerf <c(ler e ).l <clexf <c(je +[1") (33)
Choose  y, =0" and 4 =¢" in(3.2c) and (3.2d), respectively, to obtain

(a) %EtHy”HZ +(§X”,5t7/:)£—(5”,5t7/”)+/1(p“,51)/”), (3.4)

(b) %aHf”HZ (@018 )20 +en &) 20,67 )+ u'q" —UmQ e )- (e + 07,80 )+ (o + 6,67
Note that

n nj)_ n-1 n-1 - _ n nj)_ n-1 n-1 -
I R s N
Substitute (3.5) into (3.4b) to get

el +e o)
n-1 n-1

< b ’5n)_jt7nl’5nl)+(5t5" A 4 ’pn)_jf P )—/”t(ap” 7).
Adding (3.6) and (3.4b) and using Cauchy-Schwarz inequality and Young inequality, we can get

g" al =—(7n’5n)_4$t7n_1'5n_1)+(5t5",7”1)—/1(549”,7”1)+1(7n’pn)_jt7n_l’pn_l)

~@p" +&"&")- 205" &" )+ uran —UmQEr )~ (" + 07+ (" + 7.8 (3.7)

- (yn ’5n )_(yn—l’é‘n—l)-l- 1 (}/n ,pn)_ (yn—l,pn—l)
- At At

(o[ +[s" “+as"
Noting that
(unqn —U n—lQn a¢hxl :| ((unqn _un—lqn )+(un—1qn —U n—lqn )+(U n—lqn —U n—lQn )1¢hx )l

(3.6)

ol +53

2 2 2
)+

(g -uQ"&r),

2 2
+ +llg"| +e" + [yt

2 2 — 2
+ +H6tp” +" +[&"

1

<fa"], Ju" = u e+ o, u =0 O, e = Q7 el (3.8)
<cratf fuf s +[n +[e o[ +le | 1+ Clgnl-
Choose ¢4 =¢" in (3.8) to obtain
g - gr) <craf” Jufds+ | + e + 0| + e 1+l (3.9)
Substituting (3.9) into (3.8) and using (3.3), we obtain
1= N 1= N n'5n _ n—l,gn—l n, ny_ n—l, n-1
Safef galpf <o), e e
+C(Atjtti ||ut||2ds+ " g gt g 7" g " ’
18 Ol S o S o 1 e Y o T (3.10)

Sum (3.10) from n=1toJ to get
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J J—
o <l 4l )= cas o+ 1o + o 1)
+H5t5” 2l + ]| + & 12+ yt 2)+C(At)2j? Hutszt.
Choose y,=06," and ¢ =»" in(3.1c)and (3.1d), respectively, to obtain
@ b 35 )+5alef <o e 2o 37)
A £n n 1_ n 2 A N n n A ¢h n (312)
(b) -(6,2",y )+§at v <@ +e" ")+ A6, 5")
+(unqn _U n_lQn,}/Q)-i-(Tn +0n’7:)_(pn +§n,7/:).
Note that
_ n ny_ n-1 n-1 - _ n nj_ n-1 n-1 -
<5n,at§n):(§ 0 ) A(f v )_(atﬁn'gynfl), l(pn,aén):l(f P ) A(f s )_i(atpn,énfl) 013)
Substitute (3.13) into (3.12b) to get
_ 1-— 2
n!at " _at :
(y 4 )+ > 4 o o (3.14)
S—(é: ,5 )—jf ,5 )_i_(étém,gn—l)_’_ﬂ(f P )_jf P )_ﬂ(étpn,gnfl)-
Adding (3.12b) and (3.14), we get
_ _ n ny_ n-1 n-1 - n n)_ n-1 n-1 -
%6t §:Zi%at y:zg_(§ ’_5 )A(f ’5 )+(8t5",§”’1)+/1(§ P )jf 1P )_l(atpn,é;n—l)
+(@,0"+&" 7" )+ 46,57+ (" + 6"+ (g —U QT ) (o + &7 1) (3.15)
Choose ¢, =" in (3.8) to obtain
(unqn _Un—lQnJ/:)SC[AtJ.:":”UtHZdS-i- s 2 ot 2, o 2 £ 2] +% o 2. (3.16)

Substitute (3.16) into (3.15) and apply Cauchy-Schwarz inequality and Young inequality to get
lét é:: 2 +15t P < (é;n ,5n)_(é_/n—l,§n—l)+ﬂ’ (é;n ’pn)_ (é;n—llpn—l)
2 2 At At

+CLatf” fulf os+lyf 4+ [0 e+l 4l

x

(3.17)
n 2 n 2 n 2 A ¢n 2 A N 2 n 2 1 n 2
sl e[+l + o™ + o+ 1+ Sl

Sum (3.17) from n=1toJ and use Cauchy-Schwarz inequality, Young inequality and (3.12)-(3.13)
to get

2 2

2l el <ol o+l ) otarr ot ca3 .19)
n=1 .
2 2 2 2 2 — 2 — 2 2
+lp" I +E + "]+ +|y" | +H6t5” +H6tp” +le™ 1
Combining (3.11) and (3.12), we can obtain
[+l [ <l +fo” )+ clat? [ fu ot (3.19)
+CAtZJ:( 7" ‘4 p" ‘4 3 f+ " 12+ o 4|6 2+H5t5” 2+H5tp“H2+ g" 2].
n=1
Using discrete Gronwall lemma, we obtain
[+l [ <l +fo” )+ Clar? [ fu ot
J 2 2 2 2 = 2 = 2 2 (3.20)
+CA (" +|p"| +|"| +|lo" +”6t5” +H6tp” +le" ]
n=1

Noting that
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th

= r+ 1 A on
“&p <ch? 1)A_t-|‘tn4 qt(s)"ilds, 0,0

Substitute the above inequalities into (3.20) to obtain
[+l L <c{le] Jo° ]+ ClaP [ ) +au o7 e

2 I+ 1 tn
< Ch* 1)ELHHq(sj\fﬂds,

g”H2 < CAt.[;: o (s)[" .

(3.21)

2

g 2+ s 2]+h2(”1).[;(

+

J 2 2
+CAtZ[ 77” pn qt(smm—l—'—Ho}(s)Hrﬂ )dS )
n=1
Combining (3.21), (3.3), (2.4)-(2.7) with the triangle inequality, we obtain the conclusion of

Theorem 1.

Concluding remarks

Compared to the study of the H'MFEM for second-order partial differential equations, the
fourth-order nonlinear problems have not been studied in the literatures. In this paper, we study the
H*MFEM for solving nonlinear Rosenau-Burgers equation with fourth-order spatial derivative. We
obtain the optimal a priori error estimates in L%-and H*-norm for four variables. Compared to other
mixed methods, our methods can approximate the scalar unknown u, the gradientq=u,,

second-order derivative termv =g, =u,, and third-order derivative termo =v, =u,,, simultaneously.
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