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Abstract. In this paper, the sliding mode tracking control is proposed for a class of uncertain 
non-affine nonlinear systems via the nonlinear disturbance observer(NDOB). Based on the Taylor 
expansion method, the affine system is approximated to facilitate the desired control design. Then, 
the NDOB is adopted to estimate the unknown disturbance. Subsequently, based on approximated 
affine nonlinear model and the NDOB, the sliding mode tracking control is proposed for non-affine 
nonlinear systems with uncertainty. The control scheme can guarantee semi-global uniform 
boundedness of the closed-loop system signals as proved by Lyapunov analysis. Numerical 
simulation results are presented to illustrate the effectiveness of the proposed sliding mode tracking 
control scheme. 

Introduction 
In practice, there are many nonlinear systems with nonaffine structure, which has no affine 

appearance of control input. It is a difficult task to design a stable controller for nonaffine nonlinear 
systems since the control inputs impact the dynamic behavior of the systems through a nonlinear 
and implicit way.  

Numerous attempts have been made in the literature on controller design for nonaffine nonlinear 
systems. The mean-value theorem and the implicit function theorem are used to generate an affine 
system[1]. Taylor series expansion is exploited to get an affine form of system[2]. With their 
universal approximation capabilities, neural networks and fuzzy systems are adopted to establish an 
affine model of system[3]. 

It is well known that disturbances widely exist in practical systems, which includes external 
disturbances, unmodelled dynamics and parameter perburbations. Disturbance observer(DOB) 
technique was originally presented by Ohnish in 1987[4]. A nonlinear disturbance observer(NDOB) 
was proposed by Chen, and employed in robotic manipulators, missiles, helicopters and nonlinear 
systems. The DOB-based controllers have been widely studied due to their transparency in 
controller design and excellent disturbances attenuation ability[5] . 

Sliding mode control(SMC) is a well-known efficient control scheme for nonlinear systems with 
uncertainties. NDOB based SMC approach is proposed for nonlinear systems with mismatched 
uncertainties[6]. Where, the first derivatives of the mismatched uncertainties are assumed to go to 
zero in the steady state. Ginoya extends the results in [6] by proposing an extended DOB, a 
modified sliding surface and a modified control. Where, the mismatched disturbances and their first 
derivatives are assumed to be bounded[7]. Xiao presents the output feedback SMC method based on 
DOB with the same assumption as above[8]. But all these results are applied for the affine nonlinear 
systems. Zhang presents integral terminal SMC scheme for nonaffine nonlinear systems[2].  

This paper is to develop a sliding mode tracking control for a class of uncertain nonaffine 
nonlinear systems. Firstly, Taylor expansion method is applied to get the affine form of the 
nonlinear systems. Then, the unmeasured disturbances are estimated by the NDOB, and the 
estimation is used to design the sliding mode controller. Semiglobal uniform boundedness stability 
is proved using Lyapunov approach with the assumption that the disturbances and their first 
derivatives are bounded. Finally, the control performance is illustrated by simulation example. 
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Problem Formulation and Preliminaries 
Consider the following second-order nonaffine nonlinear system with external disturbance[1] 

1 2

2 ( , ) ( )
x x
x f x u d t
=

 = +




                                                            (1) 

where 1x  and 2x  are states, u  is the control input. The nonlinear function ( , )f x u  is known 
and sufficiently smooth, and ( )d t  is the external disturbance. 

The control objective is to ensure closed-loop asymptotical tracking performance in the presence 
of time-varying external disturbance. let us consider the following assumptions and lemmas. 
  Assumption 1: For all 0t > , there exist 0i∆ >  such that the reference signal dx  satisfies 

( ) ( )i
idx t ≤ ∆ , 1, 2i = . 

Lemma 1: For bounded initial conditions, if there exists a continuous and positive definite 
Lyapunov function ( )V x  satisfying 1 2( ) ( ) ( )x V x xπ π≤ ≤  such that 1 2( ) ( )V x c V x c≤ − + , 

where 1π , 2π  are class K  functions and 1 2,c c  are positive constants, then the solution ( )x t  is 
uniformly bounded. 

Assumption 2: Consider [0, ]u δ∈  and 0 f u δ≤ ∂ ∂ ≤
 , where δ  and δ

  are two finite 

positive constants. 
Assumption 3: For the system unknown external disturbance ( )d t , there exist unknown positive 

constant Md  and α , such that t R+∀ ∈  satisfy ( ) Md t d≤  and ( )d t α≤ . 

Main Results 
  (A) Taylor expansion method 

Let 1 2[ , ]Tx x x= , then system (1) can be expressed as 

1 2( , )x f x u g d= +                                                                       (2) 

where 1 2( , ) [ , ( , )]Tf x u x f x u=  and 2 [0,1]Tg = . 
  Using the novel Taylor expansion method introduced by [2], system (2) yields 

1 2( , ) ( , ) ( )x F x v g x v u O g d= + + ⋅ +                                                        (3) 

  where v vv k v k u= − + , 2 2( , ) [ , ( , )]TF x v x f x v= , 1( , ) [0, ( , )]Tg x v g x v= , 

2 1( , ) ( , ) ( , )f x v f x v g x v v= − , 1( , ) ( ( , ) ) u vg x v f x u u == ∂ ∂ ,  the remainder 2( ) [0, ( )]TO O⋅ = ⋅ , 

2
2 ( ) ( ) / 2ddO u v f⋅ = −  is bounded by 2

2 ( ) 2pO r u v⋅ ≤ − , where 
22( ( , ) )dd

u
f f x u u

x=
= ∂ ∂ , ξ is 

a point between u  and v , 0 dd pf r≤ ≤  with pr  as a finite positive number. 
  (B) NDOB design 

Considering the remainder ( )O ⋅  will be controlled by the robust term to be designed later, we 
design the NDOB for the following system. 

1 2( , ) ( , )x F x v g x v u g d= + +                                                              (4) 
The NDOB is introduced and depicted by [6] 

2 2 1[ ( , ) ( , ) ]
ˆ
p lg p l g lx F x v g x v u

d p lx

= − − + +


= +


                                                  (5) 

  where ˆ,d p  and l  are the estimation of the disturbance, the internal state of the nonlinear 
observer, the observer gain to be designed, respectively. 

Define the estimation error ˆd d d= − . The derivative of d̂  is given as 
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 2d̂ lg d=                                                                                (6) 

Considering the definition of d , we can get 

2d d lg d= −                                                                              (7) 
  (C) Sliding mode tracking control   
  Define the sliding-mode surface as 

1 1 2s e eλ= +                                                                             (8) 
where the tracking error 1 1 de x x= − , 2 2 de x x= −  , 1 0λ > is a control parameter to be designed. 
  We consider the following control vector u  as 

1
1 2 2

ˆ( , ) [ ( , ) ]d su g x v e x f x v d ksλ g−= − − + + + +                                            (9) 

where 0k >  is a design parameter, d̂  is defined in (5). To restrain the dynamic error 2 ( )O ⋅  

from (3), the robust term sγ  is designed as[2] 

, 0

0, 0
s

s s
s

s

ς
γ

 ≠= 
 =

                                                                   (10) 

where 2 ( )Oς > ⋅  is a design constant. 
(D) Stability analysis 
Theorem 1: Considering the uncertain nonaffine nonlinear system (1) with the unknown external 

disturbance, affine nonlinear approximation by Taylor expansion is given as (3) and the NDOB is 
designed as (5). If the proposed sliding mode tracking control and the robust term are chosen as (9) 
and (10), then all signals of the closed-loop system are semiglobally uniformly stable.  

  Proof: Taking the derivative of the sliding surface s defined in (8) along system (3), yields 
1 2 2 2( , ) ( , ) ( )ds e x f x v g x v u d Oλ= − + + + + ⋅                                               (11) 

Substituting the control law (9) into (11), yields 

2 ( )ss ks d Oγ= − + − + ⋅                                                                  (12) 
Consider the Lyapunov function candidate 

 2 21 1
2 2

V s d= +                                                                         (13) 

Considering (7) and (12), the time derivative of V along the state trajectory is  

V ss dd= +     
2 2

2 2( )sks ds s O s dd lg dg= − + − + ⋅ + −     
2 2 2 2

2 2
2 2( )

2 2 2 2s
d s d dks s O s lg dg≤ − + + − + ⋅ + + −
  

  

2
2 2

2 2
1( ) ( 1) ( )
2 2 s

dk s lg d s O sg= − − − − + − + ⋅


  

2
2 2

2 2
1( ) ( 1) ( )
2 2 sk s lg d s O sα g≤ − − − − + − + ⋅  

2
2 2

2 2
1( ) ( 1) ( )
2 2

k s lg d s O sα ς≤ − − − − + − + ⋅  

2
2 2

2
1( ) ( 1)
2 2

k s lg d α
≤ − − − − +  

2

2
V αρ≤ − +                                                                        (14) 
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  where 2
1: min(2( ), 2( 1))
2

k lgρ = − − . 

To ensure the closed-loop stability, the corresponding design parameters k  and l  should be 

chosen such that 1 0
2

k − > , 2 1 0lg − > . According to (14) and Lemma 1, it can be shown that the 

signals s  and d are semiglobally uniformly bounded. 

Simulation Results 
A Duffing-Holmes chaotic system with control input is used for simulation study[1] 

1 2
3

2 1 1 2 2 1 cos( ) ( , ) ( )

x x

x p x p x x q t h x u d tω

=


= − − − + + +




                                     (15)  

where 1 0.3 0.2sin(10 )p t= + , 5 0.1cos( )q t= + , 2 0.2 0.2cos(5 )p t= + , 0.5 0.1sin( )tω = + , 

( , ) 0.5cos( )h x u u u= + , and the external disturbance 1 20.4sin(0.2 ) 0.3sin( )d t x xπ= + . 
The NDOB based sliding mode tracking control is designed as (9). The design parameters are 

chosen as 50vk = , 1 10λ = , 10k = , [0 6]l = , and 0.01ς = . The desired trajectory is given by 

sin( ) cos(0.5 )dx t t= + . The initial states are arbitrarily chosen as [ ]0.8, 0 Tx = , 0v = , 0p = . 

From Figs. 1 and 2, we can observe that the tracking performance is satisfactory and the tracking 
error quickly converges to zero in the presence of the time-varying external disturbance. Fig. 4 
shows the NDOB exhibits good tracking performance. Based on these simulation results, we can 
conclude that the proposed NDOB based sliding mode tracking control is valid for the uncertain 
nonaffine nonlinear system with the time-varying external disturbance. 
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Fig. 1.  System state 1x  and desired trajectory       Fig. 2. Tracking error of system state 1x  
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Fig. 3. Control input u                    Fig.4. Disturbance estimation by NDOB 
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Conclusion 
In this paper, the NDOB based sliding mode tracking control has been proposed for a class of 

uncertain nonaffine nonlinear systems. To design tracking controller, the known nonaffine nonlinear 
system has been transformed to the affine nonlinear system by Taylor expansion method. To 
improve the ability of the disturbance attenuation and system robustness, the NDOB has been used 
to approximate the external disturbance. Based on the estimation of NDOB, the sliding mode 
tracking control has been presented for the uncertain nonaffine nonlinear system with time-varying 
external disturbances. The stability of the closed-loop system has been proved using Lyapunov 
analysis. Finally, simulation results have been shown to illustrate the effectiveness of the proposed 
sliding mode tracking control scheme. In the future work, the developed sliding mode tracking 
control for the known nonaffine nonlinear systems can be extended to the unknown nonaffine 
nonlinear systems. 
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