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Abstract. This paper presents a wideband spectrum sensing algorithm for a cognitive radio (CR) 
user equipped with a single receiving antenna. Firstly, the proposed method utilizes the temporal 
smoothing technique to form a virtual multi-antenna structure. Secondly, the wideband spectrum 
sensing problem is reformulated as a sparse reconstruction problem by exploiting a sparse 
representation of the virtual multi-antenna array covariance vector. Finally, the sparse 
reconstruction problem is modeled as a linear programming (LP) problem and hence can be solved 
efficiently. The presented method offers a number of advantages over other recently proposed 
methods. For examples, the unknown noise variances can be eliminated effectively by a linear 
transformation. It is computationally simpler since it is efficiently formulated in terms of the LP 
problem, etc. Simulation results are presented to verify the efficiency of the proposed method. 

Introduction 
For future CR networks, wideband or multi-band spectrum sensing is a crucial requirement for 

monitoring the primary users (PUs) activities and detecting spectrum holes for dynamic spectrum 
access, which can potentially improve spectrum utilization by allowing a secondary user (SU) or 
SUs to opportunistically utilize the spectrum if the primary user (PU) or PUs are inactive [1][2]. 

Various wideband spectrum sensing methods have been proposed in the literatures. For examples, 
ED is applied to wideband spectrum sensing problem [3]. A wavelet transform based method is 
proposed [4]. A simple approach to wideband spectrum sensing is presented [5]. Compressive 
sensing theory is applied in sense wideband spectrum [6]. A mixed-signal parallel segmented 
compressive sensing architecture is introduced for wideband spectrum sensing [7]. A distributed 
compressive sensing-based wideband sensing algorithm is presented for cooperative multihop CR 
networks [8]. Another framework of cooperative spectrum sensing is presented [9]. A multistage 
wiener filter (MSWF) based wideband spectrum sensing method is proposed [10]. 

In this paper, a new wideband spectrum sensing method is developed for a CR user equipped 
with a single receiving antenna. The proposed approach gives an effective sparse representation 
method by exploiting the virtual multi-antenna array covariance. Thus, all spectral holes can be 
effectively detected by finding the sparse coefficients. And then, the wideband spectrum sensing 
problem is modeled as a linear programming (LP) problem based on real-valued computation so 
that it can be solved efficiently. 

The outline of the paper is organized as follows. The data model is described in Section 2. 
Section 3 introduces the proposed LPWS algorithm. Section 4 shows some simulation results. 
Finally, the conclusion is given in Section 5. 

Data Model 

Suppose that a total of B Hz in the frequency range [ , ]L Hf f  is available for a wideband CR 
network. The entire wideband channel can be divided into K  non-overlapping narrowband 
subbands. In a particular geographical region and within a particular time interval, some of the K  
subbands might not be used by the primary users and are available for opportunistic spectrum 
access. The received signal of a secondary user can be given by 
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where t  is the time index. 0k  denotes the unknown number of primary signals. ka  stands for 
the amplitude of the thk  primary signal. ( )ks t is the baseband representation. kf  represents the 
carrier frequency of the thk  primary signal and is the center frequency of one of the occupied 
subbands. 

Assume P  is the sampling rate, which is much higher than the data rate of the primary signal. 
The data samples at the CR receiver can be written as 
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where N  is the number of samples. In the remainder of the paper, unless it is necessary to write 
it explicitly, the amplitude ka  in the data model is absorbed by ( )ks t , in which case, the 
amplitude of the primary signal is equal to ka  instead of 1. Then we can express (1) into vector 
form as 

( ) ) ( ) ( ) ( 1, 2, , )nr n n s n w n N
P

φ= + = （                                         (2) 

where 
01) [ , , ]n n

knφ φ φ= （  with exp{ (2 ) }k kj P ffp = . 
01( ) [ ( / ), , ( / )]T

kn s n P s n P= s  in which 

( )T⋅  denotes the transposition. 

Algorithm Formulation 
First, we implement the temporal smoothing technique to form a virtual multi-antenna structure 

to get the covariance matrix. 
Virtual Multiple Antennas 

In the data model, N  samples of the signal are collected by a single-antenna receiver. We adopt 
a data stacking technique named temporal smoothing to form a virtual multi-antenna structure for 
the received data model. An M -factor temporal smoothed data matrix Y  is constructed by 
stacking M  temporally shifted versions of the original data samples. As a result, Y  will have a 
virtual multi-antenna structure. On the basis of (2), Y  can be given as 
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where , 1M N Mc − +∈W  represents the noise term constructed from ( )w n  in a similar way as Y  
is obtained from ( )r n . 

Assume that the primary signal 0( ) ( 1, , )ks t k k=   is narrow band, i.e., 
( ) ( 1 ) ( )k k ks t s t P s t M P≈ + ≈ ≈ + .In this case, all the block rows in the right-hand term of (3) 

are approximately equal, which means that Y  has the following factorization 
, 1M N M

s c − +≈ + ∈Y AF W                                                        (4) 
where 

01[ ( ), , ( )]ka aφ φ= A  with ( ) [ , , ] .M T
k k ka φ φ φ=   1, 1[ (1) (2) ( 1)] N M

s s s s N M c − += − + ∈F  
is a matrix collecting 1N M− +  samples of the primary signals. The vector ( )s k  is defined by 
(2). 

Let R  be the covariance matrix of the received signal data model which has a virtual 
multi-antenna structure, that is, / ( 1)H N M= − +R YY where ( )H⋅  denotes Hermitian 
transposition. 
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Sparse Representation 
Assume that all primary signals are uncorrelated each other. The noise is a complex Gaussian 

random process with zero-mean and uncorrelated with each of primary signals. Thus, the 
corresponding population covariance matrix 2H

s n Ms= +R AR A I , where s =R  
( ) / ( 1) diag( )H

s s sN M− + =F F p  in which 
1 0

2 2( , , )
k

T
s s ss s= p  with 2

kss  denoting the signal 

power of the thk  primary signal source ( )ks t . 2
nσ  stands for the noise power. MI  denotes an 

M M×  identity matrix. Let 2
2vec( ) ( ) s n M

s∗= +� �z R A A p 1  , where 2 1 2[ , , ]T T T
MM

= 1 e e e  with ke  
being a column vector of all zeros except a 1 at the thk  position. 

0 01 1[ ( ) ( ), , ( ) ( )]k kφ φ φ φ∗ ∗ ∗= ⊗ ⊗� A A a a a a  in which ( ) ,∗⋅  � , and ⊗  represent the complex 
conjugate, Khatri-Rao product and Kronecker product, respectively. Let us construct a new matrix 

1A  of size 2 1M −  from ∗ �A A  where we have removed the repeated rows and also sorted them 
so that 

01 1 1 1 2 1[ ( ), ( ), , ( )]kφ φ φ= A a a a  with 1( )kφ =a  ( 1)[ , ,M
kφ

−  1 ( 1),1, , , ]M T
k k kφ φ φ− − − . This is 

equivalent to removing the corresponding rows from the observation vector z  and sorting them to 
get a new vector 1z  given by 2

1 1 s ns= +z A p η  , where η  is a vector of all zeros except for a 1 at 
the thM  position. In order to eliminate the unknown noise variance 2

nσ , we can remove the 
element of 1z  corresponding to the position of 2

nσ  in 2
nσ η . Thus, we can obtain a new 

observation vector 2
2 2 s np s η= +z A , where 2 1=A JA  with 1 1 1[ , , , ,T T T

M Me e e− += J  2 1, , ]T T
Me − in 

which ( [1,2 1]m m M∈ −e  and )m M≠ being a 1 (2 1)M× −  row vector with 1 at the thm  
position and 0 elsewhere. 2A  is the new steering matrix, i.e., 

02 2 1 2[ ( ), , ( )]kφ φ= A a a  with 
( 1)

2 ( ) [ , , ,M
k k kφ φ φ−= a  1 ( 1), , ]M T

k kφ φ− − − . This elimination operation avoids the estimation of noise 
variances. 

Let 1̂
ˆ{ , , }Kf f  be a sampling grid of the center frequencies of K  non-overlapping 

narrowband subbands. If the thi  subband is occupied, îf  would be contained in the frequency 
components of the received signal. We construct an N K×  matrix composed of steering vectors 
corresponding to the center frequency of each subband as its columns 2 2 1 2

ˆ ˆ( ) [ ( ), , ( )]Ka aφ φ φ= A . 
In this framework 2 ( )φA  is known and does not depend on the actual channel occupancy state. We 
represent the signal power by a 1K ×  vector x , where the element ix  is nonzero and equals to 

ip  if the thi  subband is occupied for some i  and zero otherwise. Thus, the signal model can be 
reduced to 2 2 ( )φ=z A x . Because the number of occupied subbands is small, the unknown power 
vector x is sparse, with only small number of nonzero elements. 
Solution Based on Linear Programming 

As just described previously, the wideband spectrum sensing problem can be cast as a problem 
of finding the sparsest solution of underdetermined linear system 2 2( )φ=z A x . Naturally, we 
should choose the 0l -norm as an ideal measure of sparsity. However, the 0l -norm minimization 
problem is nonconvex, NP-hard and thereby cannot be solved. Therefore, we can relax this problem 
to a simple 1l -norm minimization problem, where we equivalently seek to 

2 2min s.t. ( ) ,T φ= ≥
x

1 x z A x x 0                                                       (5) 

where 1  and 0  are 1K ×  vectors composed of 1 and 0, respectively.  

Simulation Results 
Consider a wideband partitioned into 40K =  non-overlapping subbands with equal bandwidth. 
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The center frequency of each subband is from 1 MHz to 40 MHz with 1 MHz intervals. The 
wideband channel is occupied by 0k  PUs, each user employs BPSK and the carrier frequency are 
randomly generated between 1-40 MHz. The Nyquist sampling rate sf  is set to be 80 MHz. N  
samples are used to collect transmitted signal at Nyquist sampling rate. The signal-to-noise-ratio 
(SNR) of a CR receiver is defined as the ratio of the average received signal power to noise power 
over the entire wideband. 
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Fig.1. Reconstructed signal power versus frequency 

In the first simulation, the wideband channel is occupied by three PUs and the carrier frequencies 
of PU signals are set to be 5MHz, 15MHz and 30MHz, respectively. Fig.1 depicts the reconstructed 
signal power vector x by solving the problem (6), for 256N = , 5M = , and SNR = -10dB. It can 
be seen that the proposed method can reconstruct the signal power successfully. Since the occupied 
subbands locations correspond to the locations of the peaks in x, three subbands can be decided to 
be occupied. In this way, spectral holes over a wideband channel can be detected effectively. 

In the second simulation, we demonstrate the detection performance of the proposed algorithm 
with the number of active PUs changed. Fig.2 shows the probability of detection curves for 
different numbers of PUs with SNRs varying from -20dB to 0dB. N  and M  are set to be 256 
and 6, respectively. It is shown that the probability of detection drops as the number of PUs 
increases, for the same SNR. 
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Fig.2 Probability of detection curves of the proposed algorithm 

Conclusion 
This paper presents a new wideband spectrum sensing algorithm. The wideband spectrum 

sensing problem can be transformed to the problem of estimation of signal power vector through 
sparse signal representation. Then spectrum holes can be detected effectively over a wideband 
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channel by searching peaks in the reconstructed signal power. Furthermore, the sparse signal 
reconstruction problem can be modeled as a linear programming problem so that the resulting 
optimization problem can be solved efficiently. Simulation results show that the proposed algorithm 
can achieve high probability of detection in low SNR cases. 
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