A New Theorem on Bargaining Sets in TU Games

Wenbo Yang^{1, a}, Jiuqiang Liu^{2, b}

¹Department of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang, 471023, China

² Department of Mathematics, Eastern Michigan University, Ypsilanti, MI 48197, USA

^aemail: ywb1029@163.com, ^bemail: jliu@163.com

Keywords: Soccer Robot; Mechanical Analysis; Optimal Design

Abstract. In this paper, we provide a new existence theorem by proving that Mas-Colell bargaining sets exist for all TU games.

Introduction

Let $N = \{1, 2, ..., n\}$ be the set of n players. Any subset of N is called a coalition.

Definition 1.1. A cooperative game (or a TU game) in characteristic function form with player set *N* is a map $\upsilon : 2^N \to \Box$ with the property $\upsilon(\phi) = 0$.

A payoff vector $x \in \square^n$ is said to be individual rational if $x_i \ge \upsilon(\{i\})$ for each $i \in N$.

Definition 1.2. The *imputation set* I(v) of a cooperative game v is the set

$$I(\upsilon) = \left\{ x \in \Box^n \left| \sum_{i \in N} x_i = \upsilon(N), x_i \ge \upsilon(\{i\}) \text{ for each } i \in N \right. \right\}$$

Cooperative games have been studied extensively in the literature. A central question in cooperative games is to study solution concepts and their relationships, those well-known solution concepts include cores, stable sets, Shapley values, bargaining sets, and so on.

To state Vohra's result formally, let us recall some necessary concepts from [4].

A non-transferable utility game (NTU game) in characteristic function form is defined as a pair (N,V), where $V: 2^N \to \square^N$ is a correspondence satisfying

(i) for all non-empty $S \in 2^N$, V(S) is non-empty, closed, and comprehensive,

(ii) for all
$$i \in N$$
, $V(\{i\}) = \{x \in \square^N | x_i \le 0\}$,

(iii) for all $S \in 2^N$, $V(S)_s \cap \square_+^s$ is bounded.

A TU game v in characteristic function form is equivalent to an NTU game (N, V) such that for every non-empty $S \in 2^N$,

$$V(S) = \left\{ x \in \Box^{N} \left| \sum_{i \in S} x_{i} \leq \upsilon(S) \right\} \right\}.$$
(1.1)

In fact, Condition (ii) in the definition above by Vohra also requires $\upsilon(\{i\})=0$ for all $i \in N$, which can be achieved by zero normalization.

Weak Superadditivity (version 1): For any $S \in 2^N$ and $i \notin S$, if $x \in V(S)$, then $y \in V(S \cup \{i\})$, where $y_i = 0$ and $y_j = x_j$ for $j \neq i$.

This has the following equivalent form given in [2].

Weak Superadditivity (version 2): An NTU game (N, V) is weakly superadditive if for every $i \in N$ and every $S \subseteq N \setminus \{i\}$ satisfying $S \neq \phi$, $V(S) \times V(\{i\}) \subseteq V(S \cup \{i\})$.

Clearly, for TU games, the weak superadditivity is equivalent to the following according to version 2 and (1.1).

Weak Superadditivity for TU games: $\upsilon(S) + \upsilon(\{i\}) \le \upsilon(S \cup \{i\})$ for each $S \subseteq N$ and each $i \in N \setminus S$.

In 1991, Vohra [4] proved the following existence theorem for Mas-Colell bargaining sets.

Theorem 1.3 (Vohra, 1991). If v is a weakly superadditive TU game, then the Mas-Colell bargaining set MB(v) of v is non-empty.

In this paper, we prove the following stronger existence theorem for Mas-Colell bargaining sets in TU games.

Theorem 1.4. If v is a TU game such that $v(S) \le v(N)$ for each $S \subseteq N$, then the Mas-Colell bargaining set MB(v) of v is non-empty.

Lemma 1.7. Let v be a TU game and let v_0 be the zero-normalized game of v. Then $x \in MB(v)$ if and only if $x' \in MB(v_0)$, where $x'_i = x_i - v(i)$ for each $i \in N$.

Proof of Theorem 1.4

In this section, we will give a proof for Theorem 1.4 by proving the following Theorem 2.2 which implies Theorem 1.4. Our proof is motivated in part by the ideas from [4] and [5]. Let v be a TU game. For an imputation $x \in I(v)$ and a coalition $S \subseteq N$, the excess of S at x is

$$e(S,x) = \upsilon(S) - \sum_{k \in S} x_k$$

Clearly, we have following remark from the definitions.

Remark 2.1. An objection (S, y) at x exists if and only if e(S, x) > 0.

Next, for the purpose of overcoming difficulties in our proof for Theorem 1.4, we in- troduce strong counterobjection as follows, where the special conditions imposed on strong counterobjection is just a technical device.

Strong Counterobjection: Given an objection (S, y) at $x \in I(v)$, a strong counterobjection to (S, y) at x is a pair (T, z), where T is a coalition such that $T \setminus S \neq \phi$ and there exists $h \in S \setminus T$ satisfying $y_h - x_h = \max\{y_i - x_i | i \in S\} > 0$, and z is a vector in \mathbb{R}^T satisfying that $z(T) = \sum_{i \in T} z_i = v(T), z_i \ge y_i$ for each $i \in S \cap T$, and $z_i \ge x_i + \frac{\sum_{j \in S \setminus T} (y_j - x_j)}{|T \setminus S|}$ for each $i \in T \setminus S$.

An imputation $x \in I(v)$ is said to belong to *strong Mas-Colell bargaining set* $MB_s(v)$ if for any objection (*S*, *y*) at *x*, there exists a strong counterobjection to it at *x*.

Theorem 2.2. If υ is a TU game such that $\upsilon(S) \le \upsilon(N)$ for each $S \subseteq N$, then the strong Mas-Colell bargaining set $MB_S(\upsilon)$ of υ is non-empty.

Lemma 2.3. Given an objection (S, y) at x and a non-empty coalition T such that $T \setminus S \neq \phi$ and there exists $h \in S \setminus T$ satisfying $y_h - y_h = \max\{y_i - x_i | i \in S\} > 0$, then a strong counterobjection (T, z) to (S, y) at x exists if and only if $e(T, x) \ge e(S, x)$.

Next we introduce the concept of balanced collection and a result from [11] which is needed in our proof.

Let Δ^N be the standard simplex:

$$\Delta^{N} = \left\{ x \in \mathbb{R}^{N} \, \middle| \, x_{i} \ge 0 \text{ for each } i \in \mathbb{N} \text{ and } \sum_{i=1}^{n} x_{i} = 1 \right\}.$$

Its *i*-th face is $\Delta^{N\setminus\{i\}} = \{x \in \Delta^N | x_i = 0\}$. For each $S \subseteq N$, denote e^S the n-dimensional vector

with $e_i^S = 1$ if $i \in S$ and $e_i^S = 0$ if $i \notin S$.

Definition 2.4. A collection *B* of non-empty subsets (coalitions) of *N* is balanced if there exist positive numbers λ_S for $S \in B$ such that

$$\sum_{S \in B} \lambda_s e^S = e^N. \tag{2.1}$$

The numbers λ_s are called balancing coef f icients.

Clearly, the condition in (2.1) for a balanced collection *B* is equivalent to the following.

$$\sum_{s \in B: i \in S} \lambda s = 1 \quad \text{for each} \quad i \in N.$$
(2.2)

The next theorem is proved by Zhou.

Theorem 2.5 (Zhou, 1994). If $\{O_s\}_{s \in N}$ is a family of open sets of Δ^N that satisfy $(1)\Delta^{N\setminus\{i\}} \subseteq O_{\{i\}}$ for each $i \in N$ and

$$(2)\bigcup_{S\in N}O_S=\Delta^N,$$

then there is a balanced collection B of non-empty subsets (coalitions) of N such that $\bigcap_{s \in B} O_s \neq \phi$.

Let v be a TU game. Note that the core C(v) of v consists of all $x \in I(v)$ such that $e(S,x) \leq 0$ for all $S \subseteq N$. It follows from Remark 2.1 that the core C(v) is a subset of Mas-Colell bargaining set MB(v). Thus, whenever v has a non-empty core, MB(v) is non-empty. This means that, when we deal with the existence of MB(v), we may assume that $C(v) = \phi$, that is, for any $x \in I(v)$, there exists $S \subseteq N$ such that e(S,x) > 0. For each $x \in I(v)$, let $e_x = min\{e(S,x) | S \subseteq N \text{ with } e(S,x) > 0\}$ and set

$$\varepsilon_x = \min\left\{\frac{1}{n}e_x, \frac{1}{n}\upsilon(N)\right\}$$
(2.3)

Then, under the assumption that v(N) > 0 and $C(v) = \phi$, $\varepsilon_x > 0$ for each $x \in I(v)$.

Let v be a TU game and $x \in I(v)$. We say an objection (S, y) at x is strongly justif -ied if there is no strong counterobjection to (S, y) at x. For each non-empty $S \subseteq N$, define O_S as follows:

as follows:

$$O_{\{i\}} = \left\{ x \in I(\upsilon) | x_i < \varepsilon_x \right\} \text{ for each } i \in N,$$

$$O_S = \left\{ x \in I(\upsilon) | \text{ there exists a strongly justified objection } (S, y) \text{ at } x \right\} \text{ if } |S| \ge 2$$

The following fact follows from the definition immediately.

Fact 2.6. Let v be a TU game with empty core and v(N) > 0. For each $i \in N$, $\Delta^{N \setminus \{i\}} \subseteq O_{i_i}$.

Lemma 2.7. Let v be a TU game with v(N) > 0. Then, for each non-empty $S \subseteq N$, O_S is open.

Lemma 2.8. Let *v* be a TU game such that v(N) > 0 and $v(S) \le v(N)$ for each $S \subseteq N$. Then for any balanced collection *B* of coalitions, $\bigcap_{S \in B} O_s = 0$

The next lemma allows us to assume v(N) > 0 when dealing with the non-emptiness of strong Mas-Colell bargaining sets.

Lemma 2.9. Let v be a TU game and let b > 0 be such that v(N) + b > 0. Define v to be the game such that $v(S) = v(S) + \frac{|s|}{n}b$ for each $S \subseteq N$. Then $x \in MB_s(v)$ if and only if

 $x' \in MB_s(v')$ where $x'_i = x_i + \frac{b}{n}$ for each $i \in N$.

We now prove Theorem 1.4 by proving Theorem 2.2.

Proof of Theorem 2.2. Let v be a TU game such that $v(S) \le v(N)$ for all $S \subseteq N$. In view of Lemma 2.9, we may assume v(N) > 0. In fact, if $v(N) \le 0$, then let b > 0 be such that v(N) + b > 0 and define v' to be the game such that $v'(S) = v(S) + \frac{|s|}{n}b$ for each $S \subseteq N$. Then v'(N) = v(N) + b > 0 and $v'(S) \le v'(N)$ for each $S \subseteq N$. By Lemma 2.9, $MB_s(v)$ is non-empty if and only if $MB_s(v')$ is non-empty. Thus, we may assume v(N) > 0. If the core C(v) of v is non-empty, then we have the strong Mas-Colell bargaining set $MB_s(v)$ is non-empty. Thus, we may assume that the core C(v) is empty.

Recall that for each $x \in I(v), \sum_{i=1}^{n} x_i = v(N) > 0$. We map Q = I(v) onto the standard simplex Δ^N by f:

$$f: x \to \frac{x}{\sum_{i=1}^{n} x_i}$$

Suppose, to the contrary, that the strong Mas-Colell bargaining set $MB_s(v)$ is empty. Then we have $Q \setminus U_0 \neq {}_{S \subseteq N} O_s = 0$. This means that $\Delta^N = f(Q) = U_0 \neq {}_{S \subseteq N} f(O_s)$. By Fact 2.6, $\Box^{N \setminus \{i\}} \subseteq f(O_{\{i\}})$ for each $i \in N$. It follows from Theorem 2.5 that there is a balanced collection B of coalitions such that $\bigcap_{s \in B} f(O_s) \neq 0$. But, by Lemma 2.8, we have

 $\bigcap_{s \in B} O_s = \phi$. It follows that $\bigcap_{s \in B} f(O_s) = \phi$, a contradiction. thus, the theorem holds.

Conclusion

In this paper, we proofed a stronger existence theorem by proving that Mas-Colell bargaining sets exist for all TU games.

References

[1] R. J. Auman and M. Maschler, "The bargaining sets for cooperative games" Advances in Game Theory, and AW Tucker, Princeton University Press, Princeton, N.J., (1964), 443-476.

[2] B. Peleg and P. Sudholter, "On the non-emptyness of the Mas-Colell bargaining set", Journal of Math Econ (2005) Vol. 41, 1060-1068.

[3] Ken-Ichi Shimomura, "Quasi-Cores in Bargaining Sets", International Journal of Game Theory (1997) Vol. 26, 283-302.

[4] R. Vohra, "An existence theorem for a bargaining set", J of Math Econ (1991) Vol. 20, 19-34.

[5] L. Zhou, "A New Bargaining Set of an N-Person Game and Endogenous Coalition", Games and Economic Behavior (1994) Vol. 6, 512-526.