

Change-aware Skyline Query and Update in Wireless Sensor Networks

Cheng Wang1, a, Yongli Wang1, b, Yuncheng Wu1, Shujie Sun2,

1Department of Computer Science and Engineering, Nanjing University of Science and Technology,
Nanjing, 210094, China

2Department of Oil seven factory in Daqing City, Daqing, Heilongjiang 163517, China
aemail:wangcheng46@hotmail.com, bemail:yongliwang@njust.edu.cn

Keywords: Wireless Sensor Network; Compressed Skycube; Extended Skyline; Skyline Query;
Skyline Update

Abstract. In energy-limited wireless sensor networks, multi-subspace skyline query is widely used
for all kinds of applications. In this paper, we propose a change-aware skyline query model based
on Compressed Skycube (CSC) and Extended Skyline (ES), which reduces the traffic to save the
energy of sensor in wireless sensor network on the premise of meeting user needs. We analyze the
updating possibilities of different sensors according to the variously updating frequency in
monitoring crop growth environment. We introduce an UpdateCSC algorithm based on CSC
structure and an UpdateES algorithm based on Extended Skyline. Experiments on simulated
environment show that the proposed model and algorithms can deal with mufti-subspace skyline
query, which improve the computational efficiency and effectively reduce the updating energy.

Introduction

Wireless Sensor Network (WSN) consists of many stationary or mobile sensor nodes in a
specific area, and each node has a certain computing ability and storage capacity which is to
perceive, collect, and process the monitoring information about an object, and report the result to
users[1-3]. Because there are many limits in sensor nodes, such as power energy, communication
capabilities, network transmission bandwidth and so on, the existing database query processing
technology could not widely used in WSN. Currently, data processing algorithms plays an
important role in WSN research.

Fig.1. Skyline query of finding hotel

Skyline query [4], also known as Pareto (reach own optimal situation without damaging others’
benefits), is very useful for making decisions about multi-objective selection. Specifically speaking,
skyline query processing is to select a subset A from a D-dimensional set S, and for any element in
subset A, it would not be dominated by any other elements in S. Given two D-dimensional objects p
and q, p dominates q means that, p is better than q at least on one dimension, and on other
dimensions p is not worse than q. A typical example of skyline query is, when you go to a beach for
holiday, you may want to find a hotel that is cheap and close to the beach. As shown in figure 1,
suppose that each 2-dimensional object represents a hotel, and the value of each dimension
represents a property of the hotel (e.g. distance), then the skyline include , , . With skyline

t8

t6

t5

t4

t2

t7

t3

t1

P
rice

DistanceO

International Industrial Informatics and Computer Engineering Conference (IIICEC 2015)

© 2015. The authors - Published by Atlantis Press 689

query, you just need to choose in skyline result to find your favorite hotel [5].
However, in wireless network applications, different users may care about different subspace

skyline query, and the data may change frequently. For example, as shown in figure 2, there are 8
greenhouses t ~	t in greenhouse system, each greenhouse has 4 types of sensors, including
temperature, humidity, soil moisture, soil PH, to monitor environment in the house. Suppose the
most appropriate conditions for vegetable are as following, temperature is 20℃, humidity is 30%rh,
soil moisture is 15%, soil pH is 8. Sometimes, the user may want to know skyline query result on
all dimensions (4 dimensions here), sometimes the user may be only interested on one dimension or
multi-subspace skyline query (e.g. the temperature of outside is very high, the user need to pay
significant attention on temperature and humidity subspace skyline query).

Fig.2. Greenhouse monitoring system deployed with wireless sensor network

In addition, the sensor data in the greenhouse rather changes in accordance with updating
frequency respectively. For example, the temperature sensor’s updating frequency is 15 minutes, the
humidity sensor’s updating frequency is 30 minutes, the soil moisture sensor’s updating frequency
is 1 hour, and the soil PH sensor’s updating frequency is 4 hours. If we use traditional skyline query
processing algorithm, when one type of sensor’s data is changed, we need to acquire all sensors’
data to re-compute the skyline. This will increase the amount of data transmission and energy
consumption greatly in WSN.

To sum up, the key point of multi-subspace skyline queries in pervasive computing environment
is to reduce energy consumption. In this paper, we analyze the Extended Skyline Query and
Compressed Skycube Structure, and propose a new method to reduce energy consumption of sensor
network and improve the efficiency of skyline computing. The contribution of this paper is as
follows: (1) According to the relationship between extended skyline query and compressed skycube
structure, we propose ES-CSC (Extended Skyline-Compressed Skycube) model, which could
reduce energy consumption of sensor network effectively; (2) We put forward an update algorithm
based on ES-CSC model when sensors’ data are changed.

The rest of this paper is organized as follows. Section 2 describes related work on skyline query.
Section 3 introduces relevant definitions and presents ES-CSC model. Section 4 presents an update
algorithm based on ES-CSC. Finally, Section 5 shows experimental result and Section 6 concludes
this paper.

Related Work

The skyline query is a typical multi-objective optimization problem, and its research can be
traced back to 1960. The skyline study in the database field began in 2001, which mainly concerned
how to process skyline query in the case of large amount of data and could not be placed in memory.
Current research on skyline query mainly focus on the whole space and multi-subspace query.

Borzsonyi et al. proposed BNL algorithm and D&C (divide and conquer) algorithm, BNL
compares every object with others and returns a set of objects that do not dominated by any of
others[4]; D&C divides objects into several parts and computes the skyline of each part respectively,

690

and merges them to get the final skyline. SFS[7] algorithm sorts the data set first, and puts a certain
number of objects in a window as skyline objects, then every object compares with skyline objects,
and it replaces one or many of the skyline objects if it dominate them. BBS[8] algorithm and NN[9]
algorithm are based on the nearest neighbor strategy, their difference is, NN performs multiple
nearest neighbor queries, but BBS only executes index traversal once, the result showed the BBS
algorithm achieves the best I/O.

The algorithms proposed above assumed that all objects are in a certain D-dimensional space,
and the skyline query’s dimension does not change. But in real life, different users may have
different interest. Recent studies prefer researching variable query dimensions scenes, that is, given
a set of D-dimensional objects, skyline queries can be executed on any of the D-dimensional
subspace. Pei et al.[11] introduced notions of skyline group and decisive subspace by combining the
semantics of skyline, and provided information for subspace skyline query using skyline group and
decisive subspace. According to extended skyline theory, Xin Junchang[5] proposed a multi-
subspace skyline query algorithm based on efficient energy.

Recently, researchers in the domain of data warehouse and online analytical processing are
interested in multi-subspace skyline query. Yuan et al.[10] proposed skycube structure which is the
results of all non-empty multi-subspace skyline queries in a given data set, and presented two
algorithms that could process several skyline queries simultaneously and effectively. BUS
(bottom-up skycube) algorithm computes each Cuboid in the skycube from bottom to up; and TDS
(top-down skycube) algorithm computes Cuboid by using share division, merge, and share parent
results. But due to the number of skyline is 2D-1(D-dimensional objects), it is inefficient to compute
and store all the Cuboid results. Tian Xia[6] presented compressed skycube (CSC) structure based
on skycube, which could improve the efficiency of computing and storing Cuboid results; and they
put forward a solution for updating one tuple based on CSC structure.

However, in greenhouse system, different sensor has different updating frequency, it means that,
the data does not update by tuple, but update by attribute. This situation is similar with column
storage mechanism. As we know, most of existing work is based on row storage. When we want to
modify value of a specific attribute, we need to get the whole tuple. Then as mentioned in section 1,
if there are 4 types of sensor (4 attributes, or 4 dimensional) with different updating frequency, we
need to get tuples four times than the situation that their updating frequencies are the same. And we
know, one feature of WSN is limited energy, so it will have great energy consumption when their
updating frequencies are different. So, in order to solve these problems, we combine the extended
skyline query and compressed skycube structure, propose a query model: ES-CSC, and we also put
forward an updating algorithm based on this model.

Model and Definitions

At present the main means is low click type and the lever type, low click type is on the bottom of
the ball through attack the ball flew over obstacles, this method is able to pick the ball’s advantages
and makes the energy loss in institutions least, the shortcoming is the ball high requirement of the
shape of the electromagnetic valve [11]. Therefore, the development of a high-performance control
system of soccer robot has become an urgent desire for soccer robot fans.

First, we assume that the values of sensor data in greenhouse system environment are shown in
table 1 (where tx represents the number of greenhouse, each tuple represents the set of each
attributes in the same greenhouse). Suppose there is a query to find the most appropriate
greenhouses, the query conditions are: temperature equals 20℃, humidity equals 30%rh, soil
moisture equals 15%, soil PH equals 8. Then the variances between every greenhouse’s sensor
value and the values that query expect are shown in table 2.

In this paper, the query model and update algorithm are based on compressed skycube structure
(CSC)[6] and extended skyline query[12]. The CSC structure is to compute the minimum subspace
(mss) of the whole skycube structure[10]. It only store data which is relate to skyline query results,
which reduces storage cost and transmission cost greatly. Extended skyline query is to merge the

691

same subspace of a number of skyline queries. Computing several extended skyline queries is more
efficient than computing each skyline query (specific proof, see [13]), so extended skyline query
also can improve query efficiency and reduce transmission cost. The following we will give a brief
introduction to compressed skycube structure and extended skyline query.

 Table 4. skycube structure
 Cuboid skyline

Table 3. Summary of notations Temperature t4
Notation Definitions Humidity t2,t5

T tuples in wireless sensor networks Moisture t2,t7

D full-space PH t1 ,t3,t5,t7

S
set of skyline query or extended

skyline query
 Temperature, Humidity t2,t4

T one tuple in T Temperature, Moisture t1,t2,t4
t[i] value of tuple t on subspace i Temperature, PH t1,t3,t4

U,V subspace of D Humidity, Moisture t2
skyline(U) skyline on subspace U Humidity, PH t5

mss(t) minimum subspaces of tuple t Moisture, PH t7
XSkyline(U) extended skyline on subspace U Temperature, Humidity, Moisture t1,t2,t4

S initial skyline query Temperature, Humidity, PH t1,t2,t4,t5,t7

X extended skyline query Temperature, Moisture, PH t1,t2,t4,t7
 Humidity, Moisture, PH t2,t5,t7

Temperature, Humidity, Moisture,

PH
t1,t2,t4,t5,t7

On any subspace, the domination relationship of tuples is defined as follows.
Definition 1: dominate. Tuple t dominates tuple ′ on U (denoted as) if and only if

two conditions meets: 1) for any dimension i on U, t is not worse than ′, that is ∀ ∈ ;
2) there exists at least on dimension j, t is better than ′, that is ∃ ∈ .

Definition 2: strictly dominate. Tuple t strictly dominates tuple ′ on U (denoted as →) if
and only if any dimension k on U, t is better than ′, that is ∀ ∈ .

Compressed Skycube Structure
Skycube structure, based on the conventional multi-dimensional hierarchy structure - Data Cube,

is the whole result set which is computed from skyline query on every non-empty subspace of a
given data set. Skyline result set of each subspace is called a Cuboid[10]. The skycube structure of
above-mentioned greenhouse system is shown in table 4 (e.g. the first row means, t4 is in the cuboid
<Temperature>; the last row means t1, t2, t4, t5, t7 is in the cuboid <Temperature, Humidity,
Moisture, PH>, which is skyline result of full-space).

Obviously, there are many duplicate tuples in table 4, which is not only a waste of storage space,
but also a waste of energy in WSN when it transmit duplicate tuples. In order to reduce duplicate
tuples in skycube, we quote the notion of minimum subspace (mss)[6],which is the basis of
compressed skycube (CSC).

Definition 3: minimum subspace. For a given tuple t, the minimum subspace of t, denoted as
mss(t), is a subset of all subspaces, such that ∀ ∈ , ∈ , 	∀ ⊂ , ∉ .

Table 1. Environment conditions in eight
greenhouses

Table 2. variances value to query

conditions

Temperature

(℃)
Humidity

(%rh)
Moisture

(%)
Soil
PH

Temperature

(℃)
Humidity

(%rh)
Moisture

(%)
Soil
PH

t1 22 33 17 7 t1 2 3 2 1
t2 24 29 16 5 t2 4 1 1 3
t3 18 38 19 7 t3 2 8 4 1
t4 19 28 12 6 t4 1 2 3 2
t5 26 31 13 9 t5 6 1 2 1
t6 25 27 18 10 t6 5 3 3 2
t7 15 28 14 7 t7 5 2 1 1
t8 16 25 18 10 t8 4 5 3 2

692

The minimum subspace of greenhouse system is shown in table 5 , where t1, t2, t4, t5, t7 are in
skyline(D); although t3 is not in skyline(D), its minimum subspace is not empty, this means t3 is in
the skyline of one or some subspace; mss(t6) and mss(t8) is empty, which means t6 and t8 is not only
in skyline(D), but also not in skyline of any subspace. So they are not in table . Base on definition 3,
the compressed skycube structure is defined as follows.

Table 5. minimum subspaces of tuple t Table 6. CSC structure
 mss(t) Cuboid Skyline

t1 <PH>, <Temperature, Moisture> Temperature t4

t2 <Humidity>, <Moisture> Humidity t2 , t5

t3 <PH> Moisture t2 , t7

t4 <Temperature> PH t1 , t5 , t7 , t3

t5 <Humidity>,<PH> Temperature, Moisture t1

t7 <Moisture>,<PH>

Definition 4: compressed skycube. The compressed skycube (CSC) consists of non-empty
cuboids U, and for any tuple ∈ if and only if ∈ .

According to definition 4, we can get CSC structure of greenhouse system, as shown in table 6.
Take tuple t1 as an example, in the skycube shown in table 4, t1 is exists in seven cuboids, including
<PH>, <Temperature, Moisture>, <Temperature, PH>, <Temperature, Humidity, Moisture>,
<Temperature, Humidity, PH>, <Temperature, Moisture, PH> and <Temperature, Humidity,
Moisture, PH>. In this way, we need to store t1 for seven times. But based on table 6, we only need
to store t1 twice in CSC, <PH> and <Temperature, Moisture>.

We can get the result from table 6 that, five subspaces (<Temperature>, <Humidity>,
<Moisture>, <PH>, <Temperature, Moisture>) and ten tuples (t1, t2, t5, t7 twice, and t3, t4 once)
could represent 15 subspaces and 40 tuples stored in table 4. In a word, CSC structure can improve
storage efficiency greatly.

Extended Skyline Query
Definition 5: extended skyline. Given a D-dimensional tuple set T, U is subspace of D

(⊆ ⋀ ∅), then D is parent space of U. The extended skyline on U (denoted as XSkyline(U))
contains every tuple that is not strictly dominated by others on all subspace of U.

According to table 4, on cuboid <Temperature>, the skyline is t4; on cuboid <Humidity>, the
skyline is t2, t5; on cuboid <Temperature, Humidity>, the skyline is t2, t4. According to table 2, t5.
has the same value with skyline(Temperature,Humidity) on subspace <Humidity>. So, the extended
skyline on <Temperature, Humidity>, called XSkyline(Temperature, Humidity), is t2, t4, t5.

To discuss the property of extended skyline query, we quote a quality of extended skyline[5],
denoted as lemma 1.

Lemma 1 Given a set of D-dimensional tuples T. U and V are subspaces of D (⊆). Suppose
∈ 	 	 ∈ ,	then ⊆ 	 	 .
Proof: Contradiction. Suppose tuple t is not in skyline(V), and it does not have the same value

with any tuple in skyline(V) on space U.
Analyze: 1) if ∉ , then there exists tuple ′ which dominates t on space V; because
⊆ , so ′ dominates t on space U too, that means . 2) for t does not have the same

value with ′ on space U, then . In summary, , which means there
exists ′ dominates t on space U, so ∉ . This contradict hypothesis.

According to lemma 1, we come to the conclusion as theorem 1.
Theorem 1 If U, V are subspaces of D, and ⊆ , then ⊆ .
Proof: Contradiction. Suppose there exists tuple ∈ 	 	 ∉ .
Analyze: 1) because ∈ and according to definition 1, we know that, t is not

dominated by other tuples on space U. 2) ∉ , so ∃ ∈ , dominates	 	on	 .
according to lemma 1, when ⊆ , 	 	 	 	 	 	 ′ . From 1) we
know, t is not dominated by others, so ′ . However, according to definition 5,

693

∀ ∈ T, if	 U U , then	 ∈ XSkyline . Contradiction to hypothesis.
From what we have discussed above, the skyline of subspace is contained by the extended

skyline of parent space. In this case, if we know the extended skyline of parent space in a certain
time, we will know the skyline of subspace when there are skyline queries on such subspace, then
the back server do not need to retrieve sensor data from WSN. As we see, computing several
extended skyline queries on parent space could get the skyline of subspace, so can we just compute
a full-space extended skyline query to solve all subspace skyline queries? Theoretically, it is
possible, but it will cost too much energy. The mathematical expectation on the number of tuples in
skyline is / 1 ! 	(n is number of tuples, k is dimensionality)[14].
Extended skyline only add tuples with same value on subspace, so the mathematical expectation on
extended skyline . Then we can find, the number of tuples in extended
skyline will be greatly increasing when dimensionality increasing. It would be non-efficiency for
using a full-space extended skyline to replace all subspace skyline queries. So we can join a skyline
query into an existed extended skyline query, but not generate a new extended skyline query.

To sum up, the factor that really decide whether an extended skyline query X exist is whether
there is a initial skyline query S, S’s query space is equal to X’s. Here we introduce determined
query and coverage query.

Definition 6: determined query and coverage query. Given an extended skyline query X,
determined query of X means its query space is equal to X’s query space; coverage query of X
means its query space is a subspace of X’s query space.

Take an example, suppose there are 6 initial skyline queries in greenhouse system shown in table
7a, s1, s2, s3 s4, s5, s6, extended skyline queries are shown in table 7b.

Table 7a. An Example of Extended Skyline Query(Initial)
Initial Skyline Query Query Space Extended Skyline Query

s1 <Temperature> x1
s2 <Temperature, Moisture> x1
s3 <Temperature, Humidity, Moisture> x1
s4 <Humidity, Moisture> x2
s5 <Moisture, PH> x2
s6 <Humidity, Moisture, PH> x2

Table 7b: An Example of Extended Skyline Query
Extended Skyline Query Extended SkylineQuery Space Determined Query Coverage Query

x1 <Temperature, Humidity, Moisture> s3 s1, s2
x2 <Humidity, Moisture, PH> s6 s4,s5

According to table 2 and table 7, we can know that, by using extended skyline query, the number
of skyline queries can be reduced from 6 to 2, the number of tuples transmitted in WSN can also be
reduced. So extended skyline query could also improve query efficiency (Algorithms of extended
skyline query see [5]).

ES-CSC Query Model
Now that both CSC structure and ES query can improve skyline query efficiency, could we carry

out ES query on CSC structure? Actually, according to lemma 1, when we compute extended
skyline on parent space V, we need to compare every tuple’s value on U with tuples in skyline(V), to
judge whether they are equal. But in CSC structure, this extra work is unnecessary.

Theorem 2 In CSC, T is a set of D-dimensional tuples, V is subspace of D. Suppose that set A is
XSkyline(V). Then ∀ ⊂ , 	∃ ∈ , 	in	CSC	structure	is	in	set	 .

Proof: Contradiction. Suppose that ∃ ∉ 	 	 ∈ .
According to the definition of skyline, ′ ∈ . And according to definition 4, we can

deduce ∉ ′ , then there are two situations based on definition 3.
1) ∉ . This contradicts with hypothesis.
2) ∈ , and also ∈ 	 	is	a	subspace	of	 . According to defi-

nition of minimum subspace, ∈ ′ . Then because W is a subspace of U, skyline of
W would be added in A when computing , so ∈ . This

694

contradicts with hypothesis too.
From theorem 2, we can draw the conclusion that CSC structure has saved tuples who have the

same value with on space U. When computing extended skyline of parent space, we
just need to join the subspace in CSC together. By this means, we can save query time and improve
query efficiency.

In this paper, we present a skyline query processing model --- ES-CSC, which based on ES query
and CSC structure. As figure 3 shows.

Fig.3. ES-CSC Query Model

The kernel of ES-CSC query model is CSC Generating Module and Skyline Query Overwriting
Module. In figure 3, query queue stores skyline queries that user proposed and the result of frequent
skyline queries; ES query overwriting center loads queries in the queue, and overwrites skyline
query, then send the extended skyline queries to CSC module. CSC module receives the overwrite
queries, and send the results to overwriting center and query queue. ES-CSC query model could
reduce storage space, improve query efficiency, and lessen retrieval data from WSN.

Updating on ES-CSC Model

Because energy in WSN is limited, we always want to lessen retrieval data as much as possible
on the premise of meeting user’s requirements. Traditional updating methods need to re-compute all
the skyline queries, and send all the sensor data back. But in greenhouse system, not all attributes of
a tuple is changed in a moment. According to their own specialities, different sensor has different
updating frequency, we have assumed that temperature sensor update every 15 minutes; humidity
sensor: 30 minutes; moisture sensor: 1 hour; PH sensor: 4 hours. In this situation, if we need to
re-compute all the cuboids when a type of sensor updating, it will cost too much energy. But it
could be better when updating on ES-CSC model.

Updating on CSC Structure
In CSC structure, one attribute’s value of some tuples changes would not change skyline(D), if

we have to re-compute mss(t) and CSC structure when every attribute’s value of every tuple
changes one time, no doubt, it waste lot of energy. So we need to judge whether new tuples would
be added in skyline(D) when a attribute’s value changes.

Theorem 3 Given a tuple t and ∀ ∈ , if strictly dominates t, then

∅.
Proof: according to definition 2, if strictly dominates t, for any attribute i, t[i] is worse

than ; then ∀ ⊆ , t can not be in skyline(U). Thus we know		 ∅ based on
definition 3.

Lemma 2 Given a tuple t and ∀ ∈ , if dominates t and

695

⊆ , then ⊆ .
Proof: According to [6], ∀ ⊆ , 	 ∈ , ∈ . Since strictly

dominates t on D-U, t can not be in the skyline of any subspace ∩ ∅ . Then
⊆ .

Analyze of Updating on CSC
Tuples can be divided into three kinds based on CSC structure.
1)	 ∈ : skyline of full-space (such as t1, t2, t4, t5, t7);
2) ∉ ∩ ∅: not in skyline(D), but have the same value on subspace U

with skyline(D) (such as t3);
3) ∉ ∩ ∅: not in skyline of any subspace (such as t6, t8). Among them,

minimum subspace of first two is not empty, let’s analyze these respectively.
1) ∈ . Suppose the value of t is change to on subspace Y (here	| | 1)

after updating. Because ∈ , CSC structure must be changed. There are two situations
under this condition.

a) dominates t. Cause ∈ , there is not a tuple who dominates t. Now
dominates t, so there is not a tuple dominates too. Thus ∈ .

Suppose the value of other tuples are not changed, then according to theorem 3, for tuples
∉ ∩ ∅ still would not be in CSC structure; Considering whether

dominates tuples in CSC structure, ∀	 ∈ 	except	 , compare	to	 : if does not
dominates any of them, then the minimum subspace and CSC structure would not be changed; else
if dominates a tuple, representing as 	 , based on lemma 2, we compare subspace U in

 which includes Y (⊆) to subspaces in , if there exists U in ,
we reserve ; else add U in and delete U in .

b) does not dominates t. According to definition 1 and theorem 3, for tuples ∉
∩ ∅ still would not be in CSC structure; ∀	 ∈ 	except	 ,

	compare	to	 , if there does not exist dominate relationship, the minimum subspace and CSC
structure would not be changed; else if dominates on subspace U, then based on lemma
2, we compare subspace U in which includes Y (⊆) to subspaces in ,
if they exists U in , reserve; else add U in and delete U in .

2) ∉ ∩ ∅. Suppose the value of t is change to on subspace Y
(here	| | 1) after update. There are two situations under this condition too.

a) is dominated by skyline(Y) on subspace Y. If is equal to the value of skyline(Y),
then ∀	 ∈ , find all tuples 	that dominates . According to lemma 2,
we clear first, and compare the value on subspace U which in to ,
if U , add U in ; else do nothing. If ∅, remove
from CSC structure. If is not equal to the value of skyline(Y), the update of would
not affect minimum subspace and CSC structure.

b) strictly dominates skyline(Y) on subspace Y. Obviously, in this case , ∈
. According to lemma 2, we compare every tuple whose ∅ to :

if strictly dominates t on full-space D, then put all subspaces in
into 	 , clear and remove from CSC structure; if strictly
dominates not on full-space D, but on subspace U which in , then add U into

 and delete U from ; else if on subspace U, , then add U
into but reserve U in .

3) ∉ ∩ ∅. Suppose the value of t is change to on subspace Y
(here	| | 1) after update. This situation is similar with the second except one: when is
dominated by skyline(Y) on subspace Y, if has the same value with skyline(Y), we need to
add into CSC structure; if does not have the same value with skyline(Y), the
minimum subspace and CSC structure would not be changed.

696

From what we analyzed above, we come to the conclusion that CSC structure would be changed
only under three conditions. First, ∈ and has domination relationship
(dominate or dominated) with tuples in CSC structure. Second, ∉ 	∧ ∉
and has the same value with tuple in skyline(D) on subspace U. Third, ∉ 	∧

∈ . According to these conditions, we proposed UpdateCSC algorithm, the
UpdateCSC algorithm could reduce the times to re-compute CSC structure as many as possible,
thereby improve skyline query efficiency when updating. Table 8 shows some functions used in
UpdateCSC algorithm. Figure 4 shows UpdateCSC algorithm.

Table 8: Functions and Their Explanation Used in UpdateCSC Algorithm
Function Name Explanation
mss(t).add(U) add U into mss(t)

mss(t).remove(U) remove U from mss(t)
findDominateTuple(SD,t) find tuples which dominate t in skyline set SD

overlapSubspace(mss(t1), mss(t2)) find overlap subspaces between mss(t1) and mss(t2)

Algorithm 1. UpdateCSC
Input: skyline(D), minimum subspaces of all tuples, tuple t and (Y is update column and |Y| 1)
Output: minimum subspaces after update
1: if ∈ // the update tuple ∈
2: if 	 	 	 // Declaration U (U is temporary subspace)
3: ∀ 	 	 	 	 . ; . ;
 ∀ 	 . ;
4: else 	 	 	 	 	 	
5: 		∀ 	 	 	 	 	 . ; . ;
 ∀ 	 . ;
6: else ∉ // the update tuple ∉
7:
8: if // value of has the same value with value of
9: , ; ∅;

10: 	 , ; 	 .

11: endif
12: if 	 	 	
13: ∀ 	 	 	 	 	 	
 . ; ∅;
14: ∀ 	 	 	 	 	
 . ; .
15: ∀
 . ;
16: endif
17: endif
18: return mss

Fig.4. UpdateCSC Algorithm

Complexity Analysis of UpdateCSC
Assume that there are tuples in minimum subspaces, and dimensionality of full-space id d,

the update space is Y (| | 1).
Best Case: we need to compare to all tuples in minimum subspaces to see whether they

have domination relationship. According to our analysis, if all of them do not have any relationship
with , CSC structure would not change, then complexity is the comparing times, that is the
number of tuples in minimum subspaces − . So under this situation, the algorithm complexity
is .

Worst Case: every time we compare tuple t in minimum subspaces to , we need to update
minimum subspaces; and the max dimensionality of mss(t) is d. According to our analysis, there are
2 subspaces contain space Y, and each of them need to compare to . So the algorithm
complexity is 2 ∗ .

697

Average Case: in this case, we need to differentiate whether tuple t in .
1) ∈

Assume that after update, the possibility of dominates t (denote as) and t
dominates (denoted as) are same, equal to 1/2; assume the possibility of
and ∈ have domination relationship (denoted as) and not (denoted as

_) are same, equal to 1/2 too; assume that if and have domination
relationship, the comparing times between and tuples in which contain space Y
is denoted as _ ; assume the total comparing times is NUM1 under ∈

 condition.
According to our analysis, we can deduce to:

1 ∗ ∗ _ ∗ ∗
∗ 1 ∗ ∗ ∗ _ ∗

∗ _ ∗ 1 ∗
Substitute by the assumption, we can get:

1 ∗ 1/2 ∗ _ 1 																																																																											 1
2) ∉

According to the analysis in 4.1.1, in situation 2) and 3), they all need to find tuples in minimum
subspaces that dominates t or dominated by t (assume the possibility of tuple dominates
others or dominated by others are same, equal to 1/2), and revise minimum subspaces. Assume the
total comparing times is NUM2 under ∉ condition, we can get:

2 ∗ 1/2 ∗ _ 																																																																																						 2
Now we deduce the comparing times of mathematical expectation on updating minimum

subspaces once, denoted as _ .
Because the dimensionality of full-space is d, there are 2 1 subspaces, assume that the

possibility of each subspace exists in minimum subspaces are the same, equal to 1/ 2 1 . When
update minimum subspaces, we need to find all subspaces that contain space Y, and then compare.
This problem could be transformed to select several dimensions (assume Z) from | |
dimensions, and compare value to on subspace of Z+Y. Take an example, suppose we select

, , | | 3 , then we need to enumerate all subspaces of Z, along with Y. Here the
enumerations are <Y>, <Y,A>, <Y,B>, <Y,C>, <Y,A,B>, <Y,A,C>, <Y,B,C>, <Y,A,B,C>, are
eight times, that is 2| | (we can prove it is general using mathematical induction method). Besides,
there are

| |
| | choices for selecting | | dimensions from | | dimensions. So the

comparing times here is ∗ 2 . We take abstract representation as follows:

_ 1/ 2 1 ∗ ∗ 2 																																																															 3

According to (1) (2), we can get the mathematical expectation of total comparing times
1 2

∗ _ ∗ _
Substitute _ by (3), we can get complexity of UpdateCSC algorithm in

average case is / 2 1 ∗ ∑ ∗ 2 .
If we need to consider the relationship between complexity with total number of tuples in

minimum subspaces, we can use the mathematical expectation of extended skyline query proposed
in section 3.2, / 1 ! . Since expectation of minimum
subspaces is approximately equal to expectation of extended skyline query (adding tuples with same
value), we can substitute this equation to get the result.

Updating on Extended Skyline Query
In this paper, when data is updated on subspace U, extended skyline query need to re-compute

too. Given a extended skyline query X, if it contains subspace U, then X would be update in
accordance with data is updated, we need to clear coverage query set and re-generate extended
skyline query[5]; if it does not contain subspace U, extended skyline query would not be changed.

698

Steps of UpdateES algorithm are as follows.
1) For all extended skyline queries X, to its determined query V, if ⊆ , then put X’s

 determined queries and coverage queries into initial query set, and set X null;
2) According to extended skyline generate algorithm [5], re-compute initial query set;
3) Compute the extended skyline and send back, return.
In extended skyline query example in table 7a, when data on <Temperature> update in a moment,

according to step 1, we find x1 cause it contains subspace <Temperature>; and based on step 2, we
put s1, s2, s3 into initial query set, and re-generate extended skyline queries, as table 9 shown; at last
send back the result and return.

Table 9. Update on Extended Skyline Query
Extended skyline Query Space Determined Query Coverage Query

x3 < Temperature, Moisture > s2 s1
x2 < Temperature, Moisture, PH> s6 s3,s4,s5

Performance Evaluation

In this section, we would evaluate the performance based on the proposed ES-CSC model and
UpdateES-CSC algorithm. We compare communication cost between query using ES-CSC model
and query using traditional method --- BNL[4]. We also compare CPU time between updating on
ES-CSC and updating on skycube. The experiment environment is Intel(R) Core(TM)2 Duo CPU
T7500 @2.20GHz, 3.00GB Memory, 250GB disk and Windows XP operating system, all algorithm
is based on C++.

Data set in this paper is generated by using method presented in reference [4], which is widely
used for standard test data set, data distribution is independent distribution. According to the
greenhouse system situation proposed above, we mainly analyze the situation when the number of
greenhouse (which is number of tuples m) and the number of sensor type in greenhouse (which is
dimensionality n) are varied. In simulation environment, we generate m greenhouses in √ √
square units randomly, thus every greenhouse own 1 square unit; meanwhile, we implement n types
sensor on every greenhouse (each type has one sensor). Each greenhouse chooses sensor at
bottom-left as cluster head, to collect data of all sensors in this greenhouse. Assume that the
communication radius between sensors in a greenhouse is 1 units, and set the max size of data
packet is 48 bytes; the coordinate of sink node is (0, 0), each cluster head fuses data in that
greenhouse and sends its data to sink node directly, and the sink node process data for sending back.

For better illustrating, we define
communication cost communication radius packet size.

Thus, there are m tuples in greenhouse system, each tuple has n columns representing sensors’
value. We set the parameters that we want to evaluate in table 10, if one parameter is varied, others
are default.

Table 10. Experiment Parameter
Parameter Default Value Range

number of greenhouse --- m 300 100,200,300,400,500
number of sensor type --- n 5 3,4,5,6,7,

Compare to BNL on Skyline Query
In this section we mainly evaluate the communication cost on computing multi-subspace skyline

query based on ES-CSC model (QueryES-CSC) and computing multi-subspace skyline query based
on BNL (QueryBNL). Suppose there are 20 multi-subspace skyline queries.

First, evaluate the number of greenhouse m impact on the performance of two algorithms. Figure
5 shows, as m increasing, the communication cost of two algorithms increases. The reason is that
when m increases, the number of tuples involved in computing greatly increase, which increases
number of tuples in skyline. Meanwhile, as figure 5 shows, the communication cost of
QueryES-CSC is much lower than that of QueryBNL when the number of sensor type n is equal,
this is because, by using extended skyline query, it reduce transmission of duplicate tuples in

699

network, which reduce communication cost greatly.

Fig.5. Number of greenhouse impact Fig.6. Number of sensor type impact
 on skyline querying on skyline querying

Then we evaluate the number of sensor type n impact on the performance of two algorithms. As
figure 6 shows, the communication cost of two algorithms increase when n is growing. The reason
is that the increasing dimensionality involved in computing expand the size of tuple. Besides, it can
be seen that the communication cost of QueryES-CSC is lower than that of QueryBNL when the
number of greenhouse m is equal, the reason is same as when n is equal.

Compare to Skycube on Update
This section we mainly evaluate CPU time for updating on ES-CSC model (UpdateES-CSC) and

Skycube (UpdateSkycube)[10]. We would consider two situations, one is sensors’ updating fre-
quencies are same, which means data would update by tuple; one is their update frequencies are
vary, which means data would update by attribute. Suppose there are 20 multi-subspace skyline
queries.

Situation 1: Update frequencies are same

Fig.7. Number of greenhouse impact Fig.8. Number of sensor type impact
on updating of situation 1 on updating of situation

First, we evaluate the number of greenhouse m impact on the performance of two algorithms. As

figure 7 shows, CPU time for updating increasing as m increasing. The reason is that, m increase
would lead tuples for updating increase, which directly increase CPU time for iterate the whole data
set. Meanwhile, we can get, CPU time cost by UpdateES-CSC is lesser than cost by UpdateSkycube.
This is because, UpdateES-CSC algorithm does not re-compute tuples whose update do not affect
CSC structure, thereby saving CPU time.

Then we evaluate the number of sensor type n impact on the performance of two algorithms.
Figure 8 illustrates that when n increases, CPU time of two algorithms increases, and
UpdateES-CSC algorithm uses less CPU time for updating than UpdateSkycube uses. Because
UpdateES-CSC algorithm only considers space V who contains the updated subspace ⊆ , it
does not compute other subspaces.

100 200 300 400 500
0

5

10

15

20

25

Number of greenhouse

C
om

m
un

ic
at

io
n

co
st

 (
*1

05)
QueryES-CSC

QueryBNL

3 4 5 6 7
0

5

10

15

20

25

Number of sensor type

C
om

m
un

ic
at

io
n

co
st

 (
*1

05)

QueryES-CSC

QueryBNL

100 200 300 400 500
0

2

4

6

8

10

Number of greenhouse

C
P

U
 T

im
e(

se
co

nd
s)

UpdateES-CSC

UpdateSkycube

3 4 5 6 7
0

2

4

6

8

10

Number of sensor type

C
P

U
 T

im
e(

se
co

nd
s)

UpdateES-CSC

UpdateSkycube

700

Situation 2: Update frequencies are vary

Fig.9. Number of greenhouse impact Fig.10. Number of sensor type impact
on updating of situation 2 on updating of situation 2

In this situation, we also evaluate the number of greenhouse m impact on the performance of two
algorithms firstly. As shown in figure 9, CPU time for updating increasing as m increasing. This is
because when m increases, the number of tuples involved in re-computing is increases. And we can
notice that, CPU time cost by UpdateSkycube is significantly more than cost by UpdateES-CSC.
This reason is same as situation 1. Meanwhile, comparing figure 9 to figure 7, we can get, CPU
time for updating using by UpdateSkycube on the condition that their update frequencies are vary is
approximately five times as large as their update frequencies are same; while CPU time for
updating using by UpdateES-CSC only increases a little. The reason is that, when each type of
sensor’s data is change, UpdateSkycube need to re-compute the skyline, and the default value of the
number of sensor type is close to five; but UpdateES-CSC only need to process a few computing to
judge whether some tuple to add into or remove from the skyline while most of skyline do not need
to change.

Then we evaluate the number of sensor type n impact on the performance of two algorithms in
this situation. Figure 10 shows that when n increases, CPU time of two algorithms also increases.
The reason is same as situation 1. Meanwhile, comparing figure 10 to figure 8, we can notice that
when n is growing, CPU time of UpdateES-CSC on the condition that their update frequencies are
vary is approximately n times as large as update frequencies are same. The reason is same as the
above condition.

Experiment Summary
According to the above experiments, we know that, carrying out skyline query and updating on

ES-CSC model are better than QueryBNL and UpdateSkycube respectively, especially when the
number of sensor type n increasing. These experiments shows, using ES-CSC model in WSN could
reduce energy consumption and improve updating efficiency greatly.

Conclusions

In this paper, we take wireless sensor network (WSN) as the background and research
multi-subspace skyline query in greenhouse system. After analyzing compressed skycube (CSC)
structure and extended skyline (ES) query, we propose a change-aware model --- ES-CSC and
discuss three situations for updating on this model. Experiments show that the ES-CSC model has
great performance on both multi-subspace skyline query and update.

Acknowledgment

The authors would like to thank the anonymous reviewers for their valuable comments and
suggestions. This work is supported in part by the National Natural Science Foundation of China
under Grant 61170035, 61272420 and 61370207, and the Fundamental Research Funds for the
Central Universities No. 30920130112006.

100 200 300 400 500
0

2

4

6

8

10

Number of greenhouse

C
P

U
 T

im
e(

se
co

nd
s)

UpdateES-CSC

UpdateSkycube

3 4 5 6 7
0

2

4

6

8

10

12

14

Number of sensor type

C
P

U
 T

im
e(

se
co

nd
s)

UpdateES-CSC

UpdateSkycube

701

References

[1] Fung WF, Sun D, Gehrke J. Cougar: The network is the database. In: Franklin MJ, Moon B,
Ailamaki A, eds. Proc. of the 2002 ACM SIGMOD Int’l Conf. on Management of Data. New York:
ACM Press, 2002. 621.

[2] Madden S, Franklin M, Hellerstein J, Hong W. The design of an acquisitional query processor
for sensor networks. In: Halevy AY, Ives ZG, Doan AH, eds. Proc. of the 2003 ACM SIGMOD
Int’l Conf. on Management of Data. New York: ACM Press, 2003.491−502.

[3] Considine J, Li F, Kollios G, Byers JW. Approximate aggregation techniques for sensor
databases. In: Gray J, Shenory PJ, eds. Proc. of the 20th Int’l Conf. on Data Engineering.
Washington: IEEE Computer Society Press, 2004. 449−460.

[4] Borzsonyi S, Kossmann D, Stocker K. The skyline operator. In: Proc. of the 17th Int’l Conf. on
Data Engineering. Heidelberg, IEEE Computer Society Press, 2001. 421-430.
http://www.dbis.ethz.ch/research/publications/38.pdf

[5] Baichen Chen, Weifa Liang, Jeffrey Xu Yu. Energy-efficient skyline query optimization in
wireless sensor networks. Wireless Networks. 2012, 18(8): 985-1004

[6] Tian Xia , Donghui Zhang . Refreshing the Sky: The Compressed Skycube with Efficient
Support for Frequent Updates. SIGMOD 2006, June 27-29, 2006, Chicago, Illinois, USA.

[7] Chomicki J, Godfrey P, Gryz J, Liang D. Skyline with presorting. In: Proc. of the IEEE Int’l
Conf. on Data Engineering. Los Alamitos: IEEE Computer Society Press, 2003. http://
www.cs.sfu.ca/CC/843/jpei.Skyline/Chomicki- Presorting-ICDE-3.pdf

[8] Papadias D, Tao Y, Fu G, Seeger B. Progressive skyline computation in database systems. ACM
Trans. On Database Systems, 2005, 30(1):41-82,
http://delab.csd.auth.gr/courses/c_mmdb/skyline.pdf

[9] Kossmann D, Ramsak F, Rost S. Shooting stars in the sky: An online algorithm for skyline
queries. In: Proc. of the Int’l Conf. on Very Large Data Bases. 2002.

[10] Yuan Y, Lin X, Liu Q, Wang W, Yu JX, Zhang Q. Efficient computation of the skyline cube.
In: Proc. of the 31st Int’l Conf. on Very Large Databases. ACM, 2005. 241-252.

[11] Pei J, Jin W, Ester M , Tao YF. Catching the best views of skyline: A semantic approach based
on decisive subspaces. In Proc. of the 2005 Int’l Conf. on Very Large DataBases(VLDB 2005).
2005.

[12] A. Vlachou, C. Doulkeridis, Y. Kotidis, and M.Vazirguannis. Skypeer: Efficient subspace
skyline computation over distributed data[C]. In Proc. of the 23rd Int’l Conf. on Data
Engineering(ICDE’07), Marmara Hotel, Istanbul, Turkey, April 2007, pp.415-425.

[13] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. An application-specific protocl
architecture for wireless microsensor networks [J]. IEEE Transactions on Wireless Communications,
October 2002, 1(4):660-670.

[14] S. Chaudhuri, N. N. Dalvi, R. Kaushik. Robust cardinality and cost estimation for skyline
operator [C]. In Proceedings of the 22nd International Conference on Data Engineering(ICDE’06),
Atlanta, GA, USA, April 2006, P.64.

702

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

