
Analysis on evolution features of software network
Zheng Liu1, Qian Zhang2

1College of Information Science and Engineering, Northeastern University, China
2Technology Strategy & Development Department, Neusoft Corporation, China

liuzheng@mail.neu.edu.cn

Keywords: preferential attachment mechanism, evolution features, BA model, software network

Abstract. For software structure is described by directed network more accurately, traditional
preferential attachment mechanism such as in BA model is not suitable for software network during
network evolution. According to the change of software static structure during evolution of software
system, the evolution features of software network and its formation mechanism are studied in this
paper, which will provide guides to modeling software network during software evolution.

Introduction
The evolution of software is a long-time dynamic process and the structure of the system most of
which are inherited from former must be changed to meet the new application environment [1].
Along with the evolution features being revealed, the researchers try to study the modeling of
software network by means of modeling in complex network in order to find the forming reason and
the future trend of software network during evolution. Myers presented an evolution model of
software network based on reconstruction. He believed that the increasement of software network
followed the reuse mechanism, and the software system must have continuous evolvability besides
realize complex function [2]. He Keqing, etc. studied the increasement of software system starting
with design patterns in software engineering and presented a model for Orient-Object software
based on pattern increasement, which is verified with complex network features [3]. Zheng Xiaolong,
etc. believed that the probability of vertices attached is related with not only its scale value but also
its existing time in the network. Always long existing time lead to low attached probability [4].
Tessone, etc. believes that the essential factor of the power law degree distribution in software
network is the inhomogeneous degree distribution of new vertices [5].

But most of the models presents above are based on undirected network, and the differences of
the software network structure on each level are not considered. So in this paper, the
multi-granularity features of software network, and also the preferential attachment and selection
mechanism during the network establishing are studied by analyzing many real software network
samples. Furthermore, an evolution model for multi-granularity software network is presented and
compared with real software network by simulation test.

Increase of software network
In order to study the evolution features of real software network, we choose six open source
software systems and each of them contains eight evolution versions. The statistics of the network
scale increasement during these software systems evolving is listed as Table 1.

Table 1 Increasement of software network scale during software evolving
Software Versions Number of vertices Software Versions Number of vertices
Azureus V2100 to V4700 750 to 3847 Firefox V1.0 to V8.0 5621 to 7226
Koffice V1.2.1 to V2.3.2 1688 to 6233 Tomcat V3.0 to V7.0.20 203 to 1363
Eclipse V2.0.1 to V3.7 6172 to 24734 VTK V2.4 to V5.10 566 to 3441

It can be seen that along with the software evolving, the scale of software network is increasing.
The increase of software network scale is mainly in the increase of number of vertices and edges [6].
It is also found that the relationship between the increase of vertices and that of edges is almost

International Industrial Informatics and Computer Engineering Conference (IIICEC 2015)

© 2015. The authors - Published by Atlantis Press 749

direct proportion. So the increasing of software network is considered as new vertices joining in
continuously and when new vertices join in, m edges join in at the mean time. Here m is the ratio of
the number of new edges to new vertices that can be calculated by statistics of real software
network increasing.

Preferential attachment mechanism
Limitations of preferential attachment mechanism in BA model.At present, there are much

research work on modeling of complex network and software network, and among which the
preferential attachment (BA model) proposed by Barabási and Albert is the most famous and widely
used [7]. This modeling is described as a network is started with a small network and increased
through new vertices joining in. The probability these new vertices will attach themselves to the
existing vertices is direct proportional to their degree values. But the relationship between different
classes in Orient-Object software system is always unidirectional, and the power law distribution in
undirected network cannot represent the structure features of software network completely.

The relativity between in-degree and out-degree marked by 𝑅𝑅�𝐾𝐾𝑖𝑖𝑖𝑖,𝐾𝐾𝑜𝑜𝑜𝑜𝑜𝑜� of real software
network and the network generated by BA model is studied separately. The comparison result is
listed in Table 2. It can be found that there is positive relativity between in-degree and out-degree in
BA generating network while it is opposite to real software network. Especially analyzing on the
vertices with high degree over 10, it is found there is obvious negative relativity between in-degree
and out-degree in real software network, which is agree with reference [8]. According to the statistics
of degree relativity based on BA model, although more connections will prefer to attach to the
vertices with high degree in undirected complex network model, it cannot reflect the whole
structure features of software network. So the preferential attachment should be discussed on
directed software network, and it is necessary to discuss the evolution mechanism of software
network further.

Table 2 comparison of degree relativity in real software network and simulation network based on BA model
software R in real

network
R in BA
model

R of high degree vertices in
real network

R of high degree vertices
in BA model

Azureus V4700 -0.036 0.803 -0.389 0.86
Eclipse 3.7 -0.022 0.916 -0.54 0.957
Firefox 8.0 -0.025 0.842 -0.448 0.908

Koffice 2.0.0 -0.0102 0.847 -0.456 0.93
Tomcat 7.0.20 -0.032 0.828 -0.38 0.899

VTK 5.10 -0.06 0.774 -0.588 0.925
Directions of connection.An important difference between software network and other complex

network is the in-degree and out-degree of vertices is not positively correlated. Usually, vertices
with higher in-degree have lower out-degree and vice versa. The course that new vertices join in is
actually that they attach to existing vertices in network while software evolving, including incoming
and outgoing directions. If a vertex get a new incoming connection, it means the corresponding
class is reused once, and on the contrary, if a vertex get a new outgoing connection, the
corresponding class depends on the new vertex. So the ratio of number of incoming connections to
that of outgoing connections may represent the reuse level of original code during software
evolution.

Vertices set ∆𝑉𝑉(𝑖𝑖) is defined to denote the set of new vertices in software network with version
i+1 that evolving from version i, and there is

∆𝑉𝑉(𝑖𝑖) = 𝑉𝑉(𝑖𝑖 + 1) − 𝑉𝑉(𝑖𝑖 + 1) ∩ 𝑉𝑉(𝑖𝑖) (1)
Further, 𝑉𝑉∗(𝑖𝑖) ⊂ 𝑉𝑉(𝑖𝑖) is defined to the set of vertices in original network that get new

connection from new vertices, and ∆𝐸𝐸(𝑖𝑖) is defined to denote new connections between vertices in
∆𝑉𝑉(𝑖𝑖) and those in ∆𝑉𝑉∗(𝑖𝑖). 𝑒𝑒𝑚𝑚,𝑛𝑛 denotes the edge between vertex 𝑣𝑣𝑚𝑚 and 𝑣𝑣𝑛𝑛 , where 𝑣𝑣𝑚𝑚 ⊂
∆𝑉𝑉(𝑖𝑖), 𝑣𝑣𝑛𝑛 ⊂ 𝑉𝑉(𝑖𝑖). Any vertex 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉∗(𝑖𝑖) get 𝑙𝑙𝑗𝑗𝑖𝑖𝑖𝑖 incoming edges and 𝑙𝑙𝑗𝑗𝑜𝑜𝑜𝑜𝑜𝑜 outgoing edges that
are in ∆𝐸𝐸(𝑖𝑖) . Then, 𝐿𝐿𝑖𝑖𝑖𝑖 = �𝑙𝑙1𝑖𝑖𝑖𝑖, 𝑙𝑙2𝑖𝑖𝑖𝑖, 𝑙𝑙3𝑖𝑖𝑖𝑖, … , 𝑙𝑙𝑛𝑛𝑖𝑖𝑖𝑖 �, 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 = {𝑙𝑙1𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑙𝑙2𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑙𝑙3𝑜𝑜𝑜𝑜𝑜𝑜 , … , 𝑙𝑙𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜} are defined to
denote the number of incoming connections and that of outgoing connections of each vertex in

750

𝑉𝑉∗(𝑖𝑖) separately, which meet the relation:
∑ 𝑙𝑙𝑗𝑗𝑖𝑖𝑖𝑖𝑗𝑗 + ∑ 𝑙𝑙𝑗𝑗𝑜𝑜𝑜𝑜𝑜𝑜 = |∆𝐸𝐸(𝑖𝑖)|𝑗𝑗 (2)

So, we can get the ratio of new incoming connections to all the new connections 𝑝𝑝�𝐿𝐿𝑖𝑖𝑖𝑖|∆𝐸𝐸(𝑖𝑖)�,
and

𝑝𝑝�𝐿𝐿𝑖𝑖𝑖𝑖|∆𝐸𝐸(𝑖𝑖)� =
∑ 𝐿𝐿𝑖𝑖𝑖𝑖(𝑗𝑗)𝑗𝑗

|∆𝐸𝐸(𝑖𝑖)|
 (3)

According to the above discussion, the statistics of the ratio of new incoming connections to all
the new connections 𝑝𝑝�𝐿𝐿𝑖𝑖𝑖𝑖|∆𝐸𝐸(𝑖𝑖)� is listed in Table 3 by comparing each pair of software networks
with two adjacent versions.

Table 3 ratio of new incoming connections to all the new connections during software evolution
software 1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8
Azureus 78.87% 85.69% 73.45% 80.05% 69.83% 82.70% 75.28%
Blender 78.99% 80.99% 85.62% 87.67% 83.04% 80.06% 84.83%
Eclipse 86.38% 84.15% 83.5% 88.65% 84.87% 88.7% 83.94%
Firefox 81.16% 85.83% 81.23% 77.19% 85.23% 89.42% 82.56%
Tomcat 77.06% 69.91% 73.89% 89.05% 93.05% 81.33% 94.74%
VTK 86.07% 84.99% 82.27% 93.85% 88.89% 83.31% 92.73%

It can be seen from above statistics that most of new connections in evolution model are
incoming direct, which explains that software reuse is used widely in practice of software
engineering. Reuse in software system can actually improve the efficiency of design and
development, and furthermore even be good for software evolution.

Probability of connecting.The probability that vertices get new connection is direct proportion
to their degree value in BA model. In software network, the probability that vertices get an
incoming connection or outgoing connection reflects the reusing level of software system. The
relativity between vertices getting new directed connection and their degree values is studied by
statistics of the in-degree value and out-degree value of each vertex and the number and direction of
new connection they get.

First, as to each vertex 𝑉𝑉(𝑖𝑖) , their set of incoming connection 𝐿𝐿𝑖𝑖𝑖𝑖 and set of outgoing
connection 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 are defined. Then the relativity between set of degree value, including of
in-degree and out-degree, and set of new connection is by calculating their relativity coefficient R.
The results showed that the relativity between set of in-degree value and set of new incoming
connection is higher than that between set of degree value and set of new incoming connection.
Similarly, the relativity between set of out-degree value and set of new outgoing connection is
higher than that between set of degree value and set of new outgoing connection. So it can believe
that the probability of a vertex getting an incoming connection 𝑝𝑝𝑖𝑖𝑖𝑖 is direct proportion to its
in-degree value 𝑘𝑘𝑖𝑖𝑖𝑖, and the probability of a vertex getting an outgoing connection 𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 is direct
proportion to its out-degree value 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜.

Conclusion
Preferential attachment mechanism is the main formation cause for free-scale networks during
evolution and BA model is a typical evolution model using this mechanism. We compare a
simulated software network built based on BA model with real software network and discuss the
serviceability and limitations in modeling of software network. According to the limitations of BA
model using in evolution of directed networks such as software network, we discuss the preferential
attachment mechanism fit for directed network and find that most of new connections in evolution
model are incoming direct and the probability of getting an incoming connection is direct
proportion to the vertex’s in-degree value, as the same with that of outgoing connection. These
evolution features will provide theory basis to modeling software network.

Acknowledgements
This work is supported by Fundamental Research Foundation of the Ministry of Education of China

751

(Grant No.N110304003)

References
[1] Breivold H P, Crnkovic I, Larsson M. A systematic review of software architecture evolution
research[J], Information and Software Technology, 2012, 54(1): 16-40.
[2] Myers C R. Software systems as complex networks: Structure, function, and evolvability of
software collaboration graphs [J], Physical Review E, 2003, 68 (2): 046116.
[3] He K Q, Peng R, Liu J, et.al. Design Methodology of Networked Software Evolution Growth
Based on Software Patterns [J], Journal of Systems Science and Complexity, 2006, 19(2): 157-181.
[4] Zheng X L, Zeng D, Li H Q,Wang F Y. Analyzing open-source software systems as complex
networks [J], Physica A, 2008, 387(24): 6190-6200.
[5] Tessone C J, Geipel M M, Schweitzer F. Sustainable growth in complex networks [J],
Eurpphysics letters, 2011, 96(5): 58005.
[6] Israeli A, Feitelson D G. The Linux kernel as a case study in software evolution [J], The Journal
of Systems and Software, 2010, 83(3): 485-501.
[7] Barabási A-L, Albert R. Emergence of scaling in random networks [J], Science, 1999, 286:
509-512.
[8] Myers C R. Software systems as complex networks: Structure, function, and evolvability of
software collaboration graphs [J], Physical Review E, 2003, 68 (2): 046116.

752

