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Abstract. Focused on the optimization of lunar ascent nominal trajectory, an algorithm based on the 
unscented Kalman filter (UKF) parameter estimation is proposed in this paper. The optimization of 
lunar ascent nominal trajectory problem requiring minimum fuel is formulated as a two-point 
boundary value problem (TPBVP) through the maximum principle. By treating the initial values of 
the costate variables as parameters to be estimated and setting the deviation of terminal values as 
target observations, the TPBVP is then transformed into a parameter estimation problem and solved 
by the UKF parameter estimation algorithm. Numerical simulation results demonstrate that the 
algorithm can be used to optimize lunar ascent nominal trajectory, it can also overcome the difficulty 
of guessing the initial values of the costate variables, and the calculating efficiency is higher than 
traditional optimization algorithm under the premise of guaranteed accuracy. 

Introduction 
Lunar ascent problem is a key technology for returning from the Moon. At present, the methods 

for solving lunar ascent trajectory problem are usually classified as direct method and indirect 
method[1]. Direct method converts the trajectory optimal problem into a nonlinear programming 
problem (NLP) and then obtaining the optimal solution by parameters optimization algorithms[2,3]. 
All the direct methods have common defects that they depend on the solving ability of for NLP 
software. 

Indirect method uses the Pontryagin Maximum Principle and the classical variational method of 
Lagrange multiplier method to convert optimization problem to a TPBVP. Shooting method is widely 
used to solve TPBVP[4]. However, this method is too sensitive to the initial values of the costate 
variables, and it’s difficult to guess the values because they have no physical meaning. So it’s hard to 
be solved by the traditional variational method.  

UKF is a filter suitable for nonlinear system. The advantage of UKF is that the algorithm estimates 
mean and covariance of the system state is more accurate and avoids linearization error by using 
nonlinear model directly. As a result, UKF is widely used in reentry target tracking[5], low-thrust 
orbit transfer[6], et al. 

In this paper, an algorithm based on the UKF parameter estimation is proposed to solve the 
nominal trajectory optimization of lunar ascent problem requiring minimum fuel. And several 
simulations are carried out to illustrate the advantages of this algorithm. 

Lunar Ascent Nominal Trajectory Optimization 

System Modeling. Lunar ascent can be divided into 3 phases[7]. The first one is vertical rise 
phase, in which the ascent module gets a sufficient altitude to allow clearing of local terrain. The 
second one is attitude adjustment phase which lasts about 10 seconds and prepares for the next phase. 
The third one is powered propulsion phase, in which the ascent module rises to the predetermined 
position under some kind of guidance law. 
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Considering that the ascent process time is short (about 5-7 minutes) so the rotation of the Moon 
has less influence to it, and in most conditions the ascent process starts in a coplanar orbit, besides, 
the main purpose of this paper is presenting a new algorithm, so the dynamic model is set up in the 
two-dimensional plane polar coordinates. 
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Figure 1 Lunar ascent coordinate system 

As shown in Fig. 1, the origin O is located in the center of the Moon, y-axis points to the 
pericynthion of the desired orbit, x-axis points to the motion direction of ascent module.， r  is the 
radius vector of the ascent module to the center of the Moon, θ  is the flight polar angle, F  is the 
thrust of main engine, and Ψ  is the thrust angle. 

The dynamic equations of lunar ascent module can be written as follows. 
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Where m  is the mass of the ascent module, m  is the gravitational parameter for the Moon，v  is 
the velocity alone the r-direction, ω  is the angular velocity of θ ， spI  is the specific impulse of the 
main engine, and F  is set to constant thrust. 

Define T[ , , , , ]mθ=x r v ω  as state parameters and Ψ=u  as control parameter, the Eq. 1 then 
becomes 

( , )f=x x u                                                                                                                                    (2) 

Minimum Fuel Consumption Problem. The essence of the Lunar ascent nominal trajectory 
design is to find an optimal control u  which transfer the ascent module to the predetermined orbit in 
minimum fuel consumption. The performance functional can be defined as 

0 f0
( ) [ ( ) ( )]

t
J m t dt m t m t= = − −∫                                                                                                     (3) 

Where 0t  is initial time and ft  is terminal time which is free. 
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The initial states of lunar ascent are determined by launch conditions, and the terminal states 
subject to the orbit insertion conditions. Thus the boundary conditions can be written as follows. 

Initial states, 

0 0 0 0 0 0 0 0 0 0( ) ,  ( ) ,  ( ) ,  ( ) , ( )t t t t m t mθ θ= = = = =r r v v ω ω                                                            (4) 

Terminal states, 

f f f f f f( ) ,  ( ) ,  ( )t t t= = =r r v v ω ω                                                                                                    (5) 

TPBVP. There are 5 state variables in above system, so the costate variables can be defined as 

T[ , , , , ]r v mθ ωλ λ λ λ λ=λ                                                                                                                   (6) 

The Hamiltonian function is 

sp

( , , ) ( , )T f
I

= −
FH x λ u λ x u                                                                                                         (7) 

The costate function is  

( , , )∂
= −

∂
H x λ uλ

x
                                                                                                                            (8) 

The transversality condition is 

T
f

f
( )∂ =  ∂ 

M xλ ξ
x

                                                                                                                         (9) 

Where f( )M x  is terminal conditions， ξ  is the Lagrange multiplier. 

When the input control parameter is optimal, that is *( ) ( )t t=u u , the Hamilton function reach the 
absolute maximum value, the extreme conditions can be written as 

( , , ) 0∂
=

∂
H x λ u

u
                                                                                                                            (10) 

The optimal control law is 

arctan v

ω
Ψ

 
= −  

 

λ r
λ

                                                                                                                      (11) 

Substitute Eq. 1 and Eq. 9, the derivation of Ψ  is 

2 2 22 2 2
2 2 2

v r v v

v

λ λ λ λ λ λ λ λθ ω ω ωψ
λ λω

− + + + − −
′ =

+

r r v r

r

（ ） ω ω
                                                          (12) 

Consider the range and variation rate of the thrust angle, we can adopt the optimal control law as 
follows 
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Where maxΨ  is the maximum thrust angle , and max'Ψ  is the maximum variation rate of the trust 
angle. 

Substitute the optimal control law into state and costate equations, we can get the lunar ascent 
nominal trajectory by integrating them. Finally, the optimal control problem is transformed into a 
TPBVP. In the next section, We’ll take use of the UKF parameter estimation algorithm to solve this 
TPBVP. 

UKF Parameter Estimation 
The parameter estimation problem, which is also known as the system identification problem, is a 

process which calculates the parameters of the system model according to the input and output data. 
For a system model, it can be expressed by nonlinear mapping  

( , )k kG=y x w                                                                                                                              (14) 

Where w  is a group of unknown parameters， kx  is the input data, and ky  is the output data. 
Generally speaking, the input data kx  and expected output data kd  is constant, the output error can 
be defined as ( , )k k kG= −e d x w . The purpose of parameter estimation problem is to calculate w  and 
minimize ke . To estimate parameters by UKF, the original problem can be written as 

1

( , )
k k k

k k k kG
+ = +

 = +

w w r
d x w e

                                                                                                                   (15) 

Where kr  is the process noise， kd  is the expected output, and ke  is the observation noise. Then 
the original parameter estimation problem can be solved by UKF[8]. 

In the view of optimization, the parameter estimation problem can be regarded as an optimization 
problem in which the parameters w  are the optimization variables, that is min ( )J w , where 

T e 1

1
( ) [ ( , )] ( ) [ ( , )]

k

t t t t
t

J G G−

=

= − −∑w d x w R d x w                                                                          (16) 

The output error can be defined as ( , )k k kG= −q d x w , thus the Eq. 15 can be rewritten in the 
form of observation error as follows 

1

0
k k k

k k

−= +
 = − +

w w r
q e

                                                                                                                            (17) 

Finally the original problem is converted into a parameter estimation problem in which the 
expected value of the observation error is 0. 
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The TPBVP Solved by UKF 
To convert the lunar ascent TPBVP to the parameter estimation problem, firstly, set the initial 

value of costate variables to the parameters to be estimated, and we can conclude that 0θλ =  through 
transversality conditions and equations of state, so the parameters to be estimated are 

T
0 0 0 0[ ( ), ( ), ( ), ( )]r v mt t t tωλ λ λ λ=w                                                                                                 (18) 

The observation error is 

1 f f 2 f f f f 3 f f( ) ( ) ( ) ( )q c t c t t c t= − + − + −r r r ω r ω v v                                                                     (19) 

Where fr , fv  and fω  indicate the predetermined distance to the center of the Moon, radial 
velocity and angular velocity, respectively. f( )tr , f( )tv  and f( )tω  indicate the calculated terminal 
distance to the center of the Moon, radial velocity and angular velocity, respectively. 1c , 2c and 3c  are 
the penalty factors. 

Thus, the TPBVP is corresponding to the Eq. 17 in form and can be solved by the UKF parameter 
estimation algorithm. By adjusting the initial values of the costate variables constantly through the 
UKF parameter estimation algorithm and integrating the state and costate equations, the nominal 
trajectory which meets the requirement will be calculated. 

Fig. 2 is the flow chart of the UKF parameter estimation algorithm. 

 
Figure 2 UKF parameter estimation flow-process graph 

The parameters of the UKF parameter estimation algorithm are as follows 
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Where N  is the dimension of w , λ  is a scaling parameter. The constant α  determines the 
spread of the sigma points around w , and is usually set to a small positive value (e.g. 4[10 ,1]− ). The 
constant κ  is a secondary scaling parameter to ensure the positive semi definiteness of the 
covariance matrices, which is usually set to 0. β  is used to incorporate prior knowledge of the 
distribution of w  (for Gaussian distributions, 2β =  is optimal). (m)

iW  is the weight when calculate 
the mean, and (c)

iW  is the weight when calculate the covariance. rR  is the process-noise covariance, 
eR  is the measurement-noise covariance. 

Numerical Simulation 

The Data for Simulation. The boundary conditions simulate the lunar ascent module to direct 
injection at the perigee of a 15×100km elliptical transfer orbit. The initial and terminal conditions are 
shown in Table 1, and constants for the simulation are provided in Table 2 (where Tv  is the tangential 
velocity, and st  is the simulation step). 

Table 1 Boundary conditions 
Symbol Initial Values Terminal Values 
r /[m] 1738000 1753000 

Tv /[m·s-1] 0 1692.048 
v /[m·s-1] 0 0 
θ /[°] 0 free 
m /[kg] 3000 free 
t /[s] 0 free 

Table 2 Constants for the simulation 

Symbol Quantity Symbol Quantit
y 

Lm /[m] 1738000 spI /(s) 300 
st /[s] 1 F /(N) 10000 

Simulation Results. Set the initial values of the costate variables to random values (e.g. 1), the 
optimal values calculated by the UKF parameter estimation algorithm are shown in Table 3. 

Table 3 Initial and optimal values of costate variables 
Costate Variables Initial Values Optimal Values 

rλ  1 0.0989 
vλ  1 0.7116 
ωλ  1 4.0451×106 
mλ  1 1.0000 
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The simulation results of the lunar ascent nominal trajectory are shown in Fig. 3. 
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Fig 3 Curve graphs of state and control variables 

The deviations between  terminal states and desired states are provided in Table 4. 

Table 4 Terminal state deviations of simulation results 
State Variables r /[m] Tv  /[m·s-1] v /[m·s-1] 

Deviations 0.51 4.570 -0.0183 
The simulation results indicate that the change of the states and control variables are relatively 

smooth, and the deviations of the terminal states meet the constraint condition, which prove that the 
algorithm is feasible. 

Contrast Simulation. In order to verify the rapidity of the algorithm, set the initial values of the 
costate variables to guessed values and solve this problem by the UKF parameter estimation 
algorithm, genetic algorithm (GA) and particle swarm optimization (PSO), respectively. Because GA 
and PSO are random algorithm, the simulation results are different each time. But solving by the UKF 
parameter estimation algorithm will get the same result when the covariance matrix and the initial 
values of the costate variables are unchanged. To avoid the randomness of the results, 100 times of 
simulation test are carried out using GA and PSO respectively, and set the initial values of the costate 
variables to 100 groups of random initial values and 1 group of guessed values respectively and then 
solved by the UKF parameter estimation algorithm. The contrast simulation results are shown in 
Table 5. The first 3 columns of data are mean of 100 times of simulation results, and the last column 
of data is a single simulation result. 

Table 5 Comparison of the optimization results 

 GA PSO 
UKF 

Random Values Guess Values 
Deviation of r /[m] 0.24 0.11 0.36 0.14 

Deviation of Tv  /[m·s-1] 4.513 4.547 4.562 4.550 
Deviation of v /[m·s-1] -0.0223 -0.00426 -0.0332 -0.0263 

Fuel Consumption /[kg] 1400.410 1400.410 1400.410 1400.410 

Convergence speed comparison speed is shown in Fig. 4. 
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Figure 4 Convergence curve of UKF, PSO and GA 

It can be concluded from Table 5 that when the deviations obtained by UKF parameter estimation 
algorithm are little higher than other algorithms based on random initial values. However, the Fig. 4 
show that the convergence speed of the UKF parameter estimation is much higher than POS and GA, 
especially at the beginning of the optimization. Therefore, the UKF parameter estimation algorithm 
have better performance on computation efficiency. 

Summary and Conclusions 

The lunar ascent nominal trajectory requiring minimum fuel consumption has been solved by the 
UKF parameter estimation algorithm. The main advantages of this algorithm are the avoidance of 
deriving the gradient matrix and guessing the initial values of the costate variables, which are the 
main difficulties of the traditional indirect method. The numerical results show that it’s more suited to 
optimize the lunar ascent nominal trajectory than other traditional optimization algorithms. Further 
study will focus on using 3-D system model, taking more control variables into account and 
optimizing the parameter configuration of the UKF algorithm. 
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