
Multi-Level Queue Dominant Resource Fairness in Cloud Computing
Jun Liu1, a, Xi Liu2, b

1 College of Mathematics and Information Science, Qujing Normal University,
Qujing Yunnan China 655011

2College of Information Science and Engineering, Yunnan University,
Kunming Yunnan China 650091

aliiujunxei@126.com, blxghost@126.com

Keywords: Dominant resource fairness; Multi-level queue; Cloud computing.

Abstract. Fair resource is a key building block of any shared computing system. Recently fair
division theory has emerged as a promising approach for the allocation of multiple computational
resources among users. While in reality users are not all present in the system simultaneously.
Dominant Resource Fairness(DRF) satisfies SI , PE AND EF, but violates SP. We have introduced
Multi-level Queue Dominant Resource Fairness (MQDRF), a fair sharing model that generalizes
max-min fairness to multiple resource types. MQDRF has lots of good properties, it satisfies DSI,
PE, EF and SP. We construct MQDRF mechanisms that provably satisfy properties, and analyze the
performance.

Introduction
Cloud computing[9] has become a hot research applications and is a new computing model

which is the development of distributed computing, parallel computing and grid computing. The
national institute of standards and technology to define the basic characteristics of cloud computing
is on-demand self-service and rapid elasticity[10].To achieve these characteristics, the main use
virtualization and its related technologies[11]. Cloud computing has emerged as a popular
computing paradigm that delivers resources to users. Resource utilization is a key design issue in
the cloud for both users and cloud providers. Current supercomputers and data centers typically
consist of thousands of servers connected via a high-speed network. Modern datacenters are likely
to be constructed from a variety of server classes, with different configurations in terms of
processing capabilities, memory sizes, and storage spaces[4]. At any time, there are tens of thousands
of clients concurrent running their high-performance computing applications(e.g., MapReduce[2],
MPI, Spark[3], Dryad[5],Mesos[7],Choosy[1],Quincy[8]) on the shared computing system.

Resource allocation is a key building block of any shared computer system. One of the most
popular allocation policies proposed so far has been max-min fairness[1], which maximizes the
minimum allocation received by a user in the system. Assuming each user has an equal share of the
resources. Dominant Resource Fairness(DRF)[6] is a generalization of max-min fairness for multiple
resources. The intuition behind DRF is that in a multi-resource environment, the allocation of a user
should be determined by the user’s dominant share, which is the maximum share that the user has
been allocated of any resources. For example, if user 1 runs CPU-heavy tasks and user 2 runs
memory-heavy tasks, DRF attempts to equalize user 1’s share of CPUs with user 2’s share of
memory. In the single resource case, DRF reduces to max-min fairness for that resource.

Nevertheless, some aspects of realistic computing system are beyond the current scope of fair
division theory. Perhaps most importantly, the literature does not capture the dynamics of these
systems. Indeed, it is typically not the case that all the users are present in the system at any given
time; users may arrive and depart, and the system must be able to adjust the allocation of resources.
For example, if one user arrives before another, the first user should intuitively have priority. What
does fairness mean in this concept? We introduce the concepts that are necessary to answer this
question, and design the mechanisms this satisfy our proposed desiderata.

International Industrial Informatics and Computer Engineering Conference (IIICEC 2015)

© 2015. The authors - Published by Atlantis Press 818

Problem Definition
2.1 Basic Setting
In a cloud computing system, let be its resource capacity vector. Where each

element denotes the total amount of resource r available in server. Without loss of generality,

for every resource r, we normalize the total capacity of server to 1.

Let U={1,…,N} be the set of cloud users. For every user , we normalize the resource demand

vector to , where is the fraction of resource r required by each task of user over the entire

system. For simplicity, we assume positive demands for all users, . Let be

the number of tasks processed on the server for user . User joins the system at time . Let

be the allocation returned when user reports its resource demand and be the allocation

returned from the time t. The resource requirement constraints are

ri

n

i
ir cxd ≤∑

=1
, mr ,,2,1 ⋅⋅⋅= (1)

⋅⋅⋅== mr
c

xdD
r

iir
i ,,2,1,max , nr ,,2,1 ⋅⋅⋅= (2)

Server

(2 CPUs,5GB)
Fig. 1. An example of a system containing a server shared by two users

As a concrete example, consider Fig.1. The system contains 2CPUs and 5GB memory, the
normalized capacity vectors of server is c=(c1,c2)=(1,1). Now suppose there are two users. User 1
has memory-intensive tasks each requiring 0.2 CPU time and 1GB memory, while user 2 has
CPU-heavy tasks each requiring 1 GB time and 0.2GB memory. The demand vector of user 1 is
d1=(d11,d12)=(0.2/2,1/5)=(0.1,0.2). User 2 has d2=(d21,d22)=(1/2,0.2/5)=(0.5,0.04).

For now, we assume users have an infinite number of tasks to be scheduled. Infinite users join
system at different times.

2.2 Multi-level Queue Dominant Resource Fairness Definition
For every user, DRF computes the share resources allocated to that user. The maximum among

all shares of a user is called that user’s dominant share, and the resource corresponding to the
dominant share is called the dominant resources. DRF simply applies max-min fairness across uses’
dominant shares. That is, DRF seeks to maximize the smallest dominant share in the system, then
the second-smallest, and so on.

Definition 1. Multi-level Queue Dominant Resource Fairness (MDRDF) is a multi-level queue
model. MDRDF has K levels and each level has kDK , ku and kN . ku is a set of users and kN is
maximum number of users in level k. New user is add to the queue level 1 and the users in queue
level k-1 are placed to queue level k(k=1,2,…,K) at every time t. We use DRF allocation policy at
each level queue. MDRDF satisfy the following constraints:

kDkDkDk ≥⋅⋅⋅≥≥ 21 . (3)

kk NNNN ≤=⋅⋅⋅== −121 . (4)

819

k

k

ui r

iir

N
Dk

c
xd

k

≤∑
∈

, kk ,,2,1 ⋅⋅⋅= , mr ,,2,1 ⋅⋅⋅= . (5)

Fairness Properties
The following are important and desirable properties of a fairness:
(1)Sharing incentive(SI). Each user should be better off sharing the cluster. Each user should not

be able to allocate more tasks in a cluster partition consisting of
n
1 of all resources.

(2)Dynamic sharing incentive(DSI). New user is add to the queue level 1 and the users in queue
level k-1 are placed to queue level k(k=1,2,…,K) at every time t. When the queues are full,
MQDRF satisfies SI in each level queue.

(3)Strategy-proofness (SP). Users should not be able to benefit by lying about their resource
demands. This provides incentive compatibility, as a user cannot improve her allocation by lying.

(4)Pareto efficiency(PE). It should not be possible to increase the allocation of a user without
decreasing the allocation of at least another user. This property is important as it leads to
maximizing system utilization subject to satisfying the other properties.

(5)Envy-freeness(EF). A user should not prefer the allocation of another user. If ,

then . If , then .

Consider the MQDRF vector . Next we will prove

MQDRF satisfies DSI.
Theorem 1. MQRDF satisfies the DSI property.

Proof. When the queues are full. ,, Uji ∈∀ ji KK = , we have

j

j

i

i

k

k

k

k

N
DK

N
DK

=
r

jjr

r

iir

c
xd

c
xd maxmax == , mr ,,2,1 ⋅⋅⋅= .

The amount of the resource in the queue level ik is
ii kk ND , the radio between the amount of

resource r user i can use in the queue level ik and the total of that resource available in the
queue level ik is:

iii

i

ii

i

r
kkk

rk

kk

rk
k
r

iir

UUDk
cDk

NDk
cDk

c
xd 1

=== .

r is a dominant resource of user i . For user j , we have the above formulas.
Allocation policy is DRF at each level queue and DRF satisfies SI, so MQDRF satisfies SI in

each level queue.
Theorem 2. MQRDF satisfies SP property.
Proof. If there is a user i , let ix be the number of tasks processed when user I truthfully reports

its resource vector id , and let ix′ be the number of tasks processed when user i misreports by

ii dd ≠′ . Combining (2) and (5), we have

r

iir

k

k

r

iir

k

k

c
xd

N
Dk

c
xd

N
kD

r

r

i

i maxmax ==
′′

=
′

，if ii dd ≥′ .

then ii xx ≤′ , else ii xx >′ . User i cannot increase its resources by misreports. For arbitrary honest
user Uj∈∀ , we have jjrkjkjjr xdNcDkxd

ij
==′ .

820

Theorem 3. MQRDF satisfies PE property.
Proof. Assuming MDRDF does not satisfy PE property, we must have

Ui∈∀ , 0>∃ε , 1
1

≤+∑
=

εg

n

g
gr xd .

which implies that

.

it will contradict the fact that D is the MQRDF vector and violates that DRF satisfies PE
property.

Theorem 4. MQRDF satisfies EF property.
Proof. if s

j
s
i tt ≥ , Uji ∈∀ , , we must have ji kk ≤ . .

∑∑
=

−

=

+−+=
1

1

)(
k

kkkkijkk

k

kk

t
j NDktNktDkkNDktA

j

s
i . ,

according to (3).

 ∑∑
=

−

=

+=−
1

1

k
kk

k

kk
kk

t
ji NktDNktDAA

i

s
i))((

1

1

∑∑
=

−

=

+−+−
k

kkkkij

k

kk
kk NktDNktDkkNktD

j

0
11

≥−= ∑∑
−

=

−

=

j

i

j

i

k

kk
kk

k

kk
kk NktDNktD (6)

if , we must have ji kk > . we have

 kkji
k

kk

k

k
kkji NktDkkNktDNktDAA)(

1

1

1
−++=− ∑∑

=

−

=

)(
1

1

1
∑∑
=

−

=

+−
k

kk

k

k
kk NktDNktD

kkji NktDkk)(−= .

Experimental Results
In this section, we evaluate the performance of MQDRF. The CPUs and memory of server are

normalized so that the maximum server is 1. Each user submits computing jobs, divided into a
number of tasks, each requiring a set of resources.

Fig. 2. CPU, memory, and global dominant share for three users

821

Dynamic allocation: Our first evaluation focus on the allocation fairness of the proposed
MQDRF when users dynamically join the system. We simulate 3 users join the system at different
time with different resource requirements. User 1 joins the system at the begging, requiring 0.01
CPU and 0.02 memory for each of its task. As shown in Fig.2, since only user 1 is active at the
beginning, it is allocated 20% CPU and 40% memory. This allocation continue until 100s, at which
time user 2 joins and submits CPU-heavy tasks, each requiring 0.02 CPU and 0.01 memory. So user
1 is placed to queue 2 and user 2 adds to queue 1. At 300s, user 3 joins the system and submits tasks,
each requiring 0.01 CPU and 0.01 memory. User 3 adds to queue 1 , user 2 is placed to queue 2 and
user 3 is placed to queue 3.

Fig .3. CPU and memory share for three queues

Resource utilization: We next evaluate the resource utilization of the proposed MQDRF
algorithm. We take infinite users to join the system at different times. Fig.5 depicts the time series
of CPU and memory utilization of the three queues.

Conclusion and Future Work
In this paper, we study the problem which is users arrive at the different times. We have

introduced Multi-level Queue Dominant Resource Fairness (MQDRF), a fair sharing model that
generalizes max-min fairness to multiple resource types. DRF satisfies SI , PE AND EF, but violates
SP. MQDRF has lots of good properties, it satisfies DSI , PE, EF and SP. While in reality users are
not all present in the system simultaneously, users which arrive at system at different times are
allocated resources unfair. Any user is allocated fair resources in MQDRF.

As for future work, we use MQDRF in the real system (e.g., Hadoop, yarn) and Dynamic
adjustment Multi-level Queue.

Acknowledgements
The work was supported by Chinese Natural Science Foundation Grant No.11361048, Qujing

Normal University Natural Science Foundation Grant No.2012QN016.

822

References
[1] A.Ghodsi, M, Zaharia, S.Shenker and I.Stoica. EuroSys Vol. 23, (2013),p.78
[2] J.Dean and S.Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. OSDI’04,
(2004)
[3] M. Zaharia, M. Chowdhury, M.J.Franklin, S.Shenker, I.Stoica. Spark: Cluster Computing with
Working Sets. HotCloud Vol.10,(2010),p.10
[4] M. Armbust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A.
Rabkin, I. Stoica, and M. Zaharia, “A view of cloud computing,” Commun. ACM,Vol.53, (2010), p.
50
[5] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D.Fetterly, “Dryad: distributed data-parallel programs
from sequential building blocks,” in Proc. EuroSys,(2007)
[6] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica, “Dominant
resource fairness: Fair allocation of multiple resource types,” in Proc. USENIX NSDL,(2011)
[7] B. Hindman, A. Konwinski, M.Zahria, A. Ghodis, A.D.Joseph, R.Katz, S.Shenker and I.Stoica,
Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center, NSDI (2011)
[8] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, A. Goldberg. Quincy: Fair
Scheduling for Distributed Computing Clusters, In SOSP, Vol.9, (2009),p.261
[9] M.Ambrust, A.Fox, R.Griffith, Above the Clouds: A Berkeley View of Cloud
Computing[EB/OL].(2011-01-25).http://www.eecs.berkeley.edu/pubs/techrpts/2009/EECS-(2009)
[10] J.Mell,T.Grance. The NIST definition of cloud computing. [S.I.]:National Institute of Standards
and Techology,(2011)
[11] R.Buyya,C.S.Yeo. Future Generation Computer System, Vol.25,(2009), p:599

823

