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Abstract. Fair resource is a key building block of any shared computing system. Recently fair 
division theory has emerged as a promising approach for the allocation of multiple computational 
resources among users. While in reality users are not all present in the system simultaneously. 
Dominant Resource Fairness(DRF) satisfies SI , PE AND EF, but violates SP. We have introduced 
Multi-level Queue Dominant Resource Fairness (MQDRF), a fair sharing model that generalizes 
max-min fairness to multiple resource types. MQDRF has lots of good properties, it satisfies DSI, 
PE, EF and SP. We construct MQDRF mechanisms that provably satisfy properties, and analyze the 
performance. 

Introduction 
Cloud computing[9] has become a hot research applications and is  a new computing model 

which is the  development of distributed computing, parallel computing and grid computing. The 
national institute of standards and technology to define the basic characteristics of cloud computing 
is on-demand self-service and rapid elasticity[10].To achieve these characteristics, the main use 
virtualization and its related technologies[11].  Cloud computing has emerged as a popular 
computing paradigm that delivers resources to users. Resource utilization is a key design issue in 
the cloud for both users and cloud providers. Current supercomputers and data centers typically 
consist of thousands of servers connected via a high-speed network. Modern datacenters are likely 
to be constructed from a variety of server classes, with different configurations in terms of 
processing capabilities, memory sizes, and storage spaces[4]. At any time, there are tens of thousands 
of clients concurrent running their high-performance computing applications(e.g., MapReduce[2], 
MPI, Spark[3], Dryad[5],Mesos[7],Choosy[1],Quincy[8]) on the shared computing system. 

Resource allocation is a key building block of any shared computer system. One of the most 
popular allocation policies proposed so far has been max-min fairness[1], which maximizes the 
minimum allocation received by a user in the system. Assuming each user has an equal share of the 
resources. Dominant Resource Fairness(DRF)[6] is a generalization of max-min fairness for multiple 
resources. The intuition behind DRF is that in a multi-resource environment, the allocation of a user 
should be determined by the user’s dominant share, which is the maximum share that the user has 
been allocated of any resources. For example, if user 1 runs CPU-heavy tasks and user 2 runs 
memory-heavy tasks, DRF attempts to equalize user 1’s share of CPUs with user 2’s share of 
memory. In the single resource case, DRF reduces to max-min fairness for that resource. 

Nevertheless, some aspects of realistic computing system are beyond the current scope of fair 
division theory. Perhaps most importantly, the literature does not capture the dynamics of these 
systems. Indeed, it is typically not the case that all the users are present in the system at any given 
time; users may arrive and depart, and the system must be able to adjust the allocation of resources. 
For example, if one user arrives before another, the first user should intuitively have priority. What 
does fairness mean in this concept? We introduce the concepts that are necessary to answer this 
question, and design the mechanisms this satisfy our proposed desiderata. 
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Problem Definition 
2.1 Basic Setting 
In a cloud computing system, let be its resource capacity vector. Where each 

element  denotes the total amount of resource r available in server. Without loss of generality, 

for every resource r, we normalize the total capacity of server to 1. 

 
Let U={1,…,N} be the set of cloud users. For every user , we normalize the resource demand 

vector to , where is the fraction of resource r required by each task of user  over the entire 

system. For simplicity, we assume positive demands for all users, . Let  be 

the number of tasks processed on the server for user . User  joins the system at time . Let  

be the allocation returned when user  reports its resource demand  and  be the allocation 

returned from the time t. The resource requirement constraints are 
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Server 

(2 CPUs,5GB) 
Fig. 1. An example of a system containing a server shared by two users 

As a concrete example, consider Fig.1. The system contains 2CPUs and 5GB memory, the 
normalized capacity vectors of server is c=(c1,c2)=(1,1). Now suppose there are two users. User 1 
has memory-intensive tasks each requiring 0.2 CPU time and 1GB memory, while user 2 has 
CPU-heavy tasks each requiring 1 GB time and 0.2GB memory. The demand vector of user 1 is 
d1=(d11,d12)=(0.2/2,1/5)=(0.1,0.2). User 2 has d2=(d21,d22)=(1/2,0.2/5)=(0.5,0.04).  

For now, we assume users have an infinite number of tasks to be scheduled. Infinite users join 
system at different times. 

2.2 Multi-level Queue Dominant Resource Fairness Definition 
For every user, DRF computes the share resources allocated to that user. The maximum among 

all shares of a user is called that user’s dominant share, and the resource corresponding to the 
dominant share is called the dominant resources. DRF simply applies max-min fairness across uses’ 
dominant shares. That is, DRF seeks to maximize the smallest dominant share in the system, then 
the second-smallest, and so on. 

Definition 1. Multi-level Queue Dominant Resource Fairness (MDRDF) is a multi-level queue 
model. MDRDF has K levels and each level has kDK , ku  and kN . ku  is a set of users and kN is 
maximum number of users in level k. New user is add to the queue level 1 and the users in queue 
level k-1 are placed to queue level k(k=1,2,…,K) at every time t. We use DRF allocation policy at 
each level queue. MDRDF satisfy the following constraints: 

kDkDkDk ≥⋅⋅⋅≥≥ 21 .                                                    (3) 

kk NNNN ≤=⋅⋅⋅== −121 .                                                 (4) 
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Fairness Properties 
The following are important and desirable properties of a fairness: 
(1)Sharing incentive(SI). Each user should be better off sharing the cluster. Each user should not 

be able to allocate more tasks in a cluster partition consisting of
n
1  of all resources. 

(2)Dynamic sharing incentive(DSI). New user is add to the queue level 1 and the users in queue 
level k-1 are placed to queue level k(k=1,2,…,K) at every time t. When the queues are full, 
MQDRF satisfies SI in each level queue. 

(3)Strategy-proofness (SP). Users should not be able to benefit by lying about their resource 
demands. This provides incentive compatibility, as a user cannot improve her allocation by lying. 

(4)Pareto efficiency(PE). It should not be possible to increase the allocation of a user without 
decreasing the allocation of at least another user. This property is important as it leads to 
maximizing system utilization subject to satisfying the other properties. 

(5)Envy-freeness(EF). A user should not prefer the allocation of another user. If , 

then . If , then . 

Consider the MQDRF vector . Next we will prove 

MQDRF satisfies DSI. 
Theorem 1. MQRDF satisfies the DSI property. 

Proof.  When the queues are full. ,, Uji ∈∀  ji KK = ,  we have 

j

j

i

i

k

k

k

k

N
DK

N
DK

=
r

jjr

r

iir

c
xd

c
xd maxmax == , mr ,,2,1 ⋅⋅⋅= . 

The amount of the resource in the queue level ik  is 
ii kk ND , the radio between the amount of 

resource r user i  can use in the queue level ik  and the total of that resource available in the 
queue level ik  is: 
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r is a dominant resource of user i . For user j , we have the above formulas. 
Allocation policy is DRF at each level queue and DRF satisfies SI, so MQDRF satisfies SI in 

each level queue.  
Theorem 2. MQRDF satisfies SP property. 
Proof. If there is a user i , let ix be the number of tasks processed when user I truthfully reports 

its resource vector id , and let ix′  be the number of tasks processed when user i  misreports by 

ii dd ≠′ . Combining (2) and (5), we have  
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then ii xx ≤′ , else ii xx >′ . User i cannot increase its resources by misreports. For arbitrary honest 
user Uj∈∀ , we have jjrkjkjjr xdNcDkxd
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Theorem 3. MQRDF satisfies PE property. 
Proof.  Assuming MDRDF does not satisfy PE property, we must have  
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. 

it will contradict the fact that D is the MQRDF vector and violates that DRF satisfies PE 
property. 

Theorem 4. MQRDF satisfies EF property. 
Proof.  if s
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if  , we must have ji kk > . we have 
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Experimental Results 
In this section, we evaluate the performance of MQDRF. The CPUs and memory of server are 

normalized so that the maximum server is 1. Each user submits computing jobs, divided into a 
number of tasks, each requiring a set of resources. 

 
Fig. 2. CPU, memory, and global dominant share for three users  
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Dynamic allocation: Our first evaluation focus on the allocation fairness of the proposed 
MQDRF when users dynamically join the system. We simulate 3 users join the system at different 
time with different resource requirements. User 1 joins the system at the begging, requiring 0.01 
CPU and 0.02 memory for each of its task. As shown in Fig.2, since only user 1 is active at the 
beginning, it is allocated 20% CPU and 40% memory. This allocation continue until 100s, at which 
time user 2 joins and submits CPU-heavy tasks, each requiring 0.02 CPU and 0.01 memory. So user 
1 is placed to queue 2 and user 2 adds to queue 1. At 300s, user 3 joins the system and submits tasks, 
each requiring 0.01 CPU and 0.01 memory. User 3 adds to queue 1 , user 2 is placed to queue 2 and 
user 3 is placed to queue 3. 

 
Fig .3. CPU and memory share for three queues 

Resource utilization: We next evaluate the resource utilization of the proposed MQDRF 
algorithm. We take infinite users to join the system at different times. Fig.5 depicts the time series 
of CPU and memory utilization of the three queues. 

Conclusion and Future Work 
In this paper, we study the problem which is users arrive at the different times. We have 

introduced Multi-level Queue Dominant Resource Fairness (MQDRF), a fair sharing model that 
generalizes max-min fairness to multiple resource types. DRF satisfies SI , PE AND EF, but violates 
SP. MQDRF has lots of good properties, it satisfies DSI , PE, EF and SP. While in reality users are 
not all present in the system simultaneously, users which arrive at system at different times are 
allocated resources unfair. Any user is allocated fair resources in MQDRF. 

As for future work, we use MQDRF in the real system (e.g., Hadoop, yarn) and Dynamic 
adjustment Multi-level Queue. 
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