
Dominant Resource Fairness with Time Constraints in Cloud Computing
Chunyan Zhu

College of Computer Science and Engineering, Qujing Normal University,
Qujing Yunnan China 655011

chunyan8248@126.com

Keywords: Dominant resource fairness; Time constraints; Cloud computing

Abstract. Fair resource is a key building block of any shared computing system. Recently fair
division theory has emerged as a promising approach for the allocation of multiple computational
resources among users. While in reality users are not all present in the system simultaneously.
Dominant Resource Fairness(DRF) satisfies SI , PE AND EF, but violates SP. We have introduced
Dominant Resource Fairness with Time Constraints (TDRF), a fair sharing model that generalizes
max-min fairness to multiple resource types. TDRF has lots of good properties, it satisfies DSI, PE
and SP. Users can exchange resources which are user don not need for resources which are user
need by exchange mechanism. TDRF think about the time factor to improve the overall
effectiveness of the system. If users stay the system more longer, the resources which user
contributes will be use more longer by other users. We construct TDRF mechanisms that provably
satisfy properties, and analyze the performance.

Introduction
Cloud computing[9] has become a hot research applications and is a new computing model

which is the development of distributed computing, parallel computing and grid computing. The
national institute of standards and technology to define the basic characteristics of cloud computing
is on-demand self-service and rapid elasticity[10].To achieve these characteristics, the main use
virtualization and its related technologies[4]. At any time, there are tens of thousands of clients
concurrent running their high-performance computing applications(e.g., MapReduce[2], MPI,
Spark[3], Dryad[5], Mesos[7], Choosy[1], Quincy[8]) on the shared computing system.Resource
allocation is a key building block of any shared computer system. One of the most popular
allocation policies proposed so far has been max-min fairness[1]. Dominant Resource
Fairness(DRF)[6] is a generalization of max-min fairness for multiple resources.

Nevertheless, some aspects of realistic computing system are beyond the current scope of fair
division theory. Indeed, it is typically not the case that all the users are present in the system at any
given time; users may arrive and depart, and the system must be able to adjust the allocation of
resources. For example, if one user arrives before another, the first user should intuitively have
priority. What does fairness mean in this concept? We introduce the concepts that are necessary to
answer this question, and design the mechanisms this satisfy our proposed desiderata.
 The number of machines and applications running in cloud computing system is steadily
increasing, leading to a diverse set of applications running over heterogeneous hardware. This has
resulted in applications having constraints on the machines they can run on. For instance, a DNS
server might need to run on machines that have a public IP address. While the nature of the
constraints might vary, they can usually be classified into two categories: hard constraints and soft
constraints. A job cannot run if its hard constraints are violated.

Problem Definition
2.1 Basic Setting
Let U={1,…,N} be the set of cloud users. For every user i , we normalize the resource demand

vector to id , where ird is the fraction of resource r required by each task of user i over the entire

International Industrial Informatics and Computer Engineering Conference (IIICEC 2015)

© 2015. The authors - Published by Atlantis Press 831

system. For simplicity, we assume positive demands for all users, 0>ird , Ui∈∀ , Rr∈ . Let ix be
the number of tasks processed on the server for user i . User i joins the system at time it . Each
user i contributes ik resources to a common pool of machines, her weight is ik ,

jc
ik (Ui∈∀ , Cc j ∈∀) is jc type resource of user i contribute.

2.2 Exchange mechanism
User i contributes resources)3.0,1.0,5.0(=ik with),(32 ccci = and user j contributes

resources)3.0,8.0,1.0(=ik with),(31 ccc j = . User i can change the resources which user i
cannot use with user j . User i can get resources)3.0,6.0,0(=′ik and user j gets resources

),,(321 ccck j =′)3.0,0,6.0(= . So users increase the resources which are they can use. user i ’
resource 2c increased to 0.6 and user j ’ resource 1c increased to 0.6 by exchange mechanism.
Algorithm 1 displays the exchange mechanism. Algorithm need traverse each user, so the
complexity of the algorithm is)(UO .

2.3 Dominant Resource Fairness(DRF)
DRF is an allocation policy for multiple resources that meets all four of the required properties.

For every user, DRF computes the share of each resource allocated to that user. The maximum
among all shares of a user is called that user’s dominant share, and the resource corresponding to
the dominant share is called the dominant resource. Different users may have different dominant
resources. DRF seeks to maximize the smallest dominant share in the system, then the
second-smallest, and so on.

Consider a system with of 9CPUS, 9GB RAM, and two users, where user A runs tasks with
demand vector<1CPU, 2GB>, and user B runs tasks with demand vector<3CPUs, 1GB> each. Each
task from A consumers 1/9 of the total CPUs and 2/9 of the total memory, so user A’s dominant
resource is memory. Each task from B consumers 3/9 of the total CPUs and 1/9 of the total memory,
so user B’s dominant resource is CPU. Let x and y be the number of tasks allocated by DRF to users
A and B, respectively. Then user A receives<x CPU, 2x GB>, and user B gets <3y CPU, y GB>.
The dominant shares of users A and B are 2x/9=3y/9. The DRF allocation is then given by the
solution to the following optimization problem:

Max(x,y)
Subject to x+3y≤9, 2x+y≤9, x/9=3y/9.
Solving this problem yields x=3 and y=2. Thus, user A gets<3 CPU,6 GB> and user B

gets<6CPU,2GB>.
2.4 Dominant Resource Fairness with Time Constraints (TDRF)
DRF primary purpose is the fairness of dominant resources, but it think about the time length of

the user stays in the system. Each user joins the system with contributing resources. If users stay the
system more longer, the resources which user contributes will be use more longer by other users. So
we must think about the time factor. We assume initt is the initial time and maxt is the running
time in the system. User i joins the system at time it . The TDRF allocation is then given by the
solution to the following optimization problem:

Max(x,y)

Subject to x+3y≤9, 2x+y≤9,
Solving this problem yields x=4 and y=1. Thus, user A gets<4 CPU,8 GB> and user B

gets<3CPU,1GB>. User A who joins the system earlier than B can get more allocation resources in
the TDRF then DRF. If users stay the system more longer, the resources which user contributes will
be use more longer by other users. TDRF encourages users to stay longer in the system.

ALGORITHM2 CDRF pseudo-code
1:),,,(21 nkkkk ⋅⋅⋅= : each user i contributes ik resources
2:),,,(21 nuuuU ⋅⋅⋅= : the set of users

832

3:),,,(21 nkkkk ′⋅⋅⋅′′=′ : user i get ik′ by exchange mechanism
4:),,,(21 nRRRR ⋅⋅⋅= ;the total resources in the system
5：),,,(21 nssss ⋅⋅⋅= : user i’s dominant shares, initially 0
6: { }ntttt ,,, 21 ⋅⋅⋅= : user i joins the system at time it
7： { }nDDDD ,,, 21 ⋅⋅⋅= : resources given to user i, initially 0
8: { }ncccC ,,, 21 ⋅⋅⋅= : consumed resources, initially 0
9: Run Algorithm 1
10: For each Ui∈∀
11: iii kDD ′+= →update consumed vector
12: iDCC += →update i′ allocation vector

13: { } minmax

min

,1max
tt

ttRDs
i

jji
r
ji −

−
×= =

12: end each
14: pick user i with lowest dominant share is
14: iJ ←demand of user i′ next task
15: if RJCC i ≤+= then
16: iJCC += →update consumed vector
17: iii JDD += →update i′ allocation vector

18: { } minmax

min

,1max
tt

ttRDs
i

jji
r
ji −

−
×= =

19: else
20: return →the cluster is full
21: END
2.5 Fairness Properties
The following are important and desirable properties of a fairness:
（1）Sharing incentive(SI) [6]. Each user should be better off sharing the cluster. Each user should

not be able to allocate more tasks in a cluster partition consisting of
n
1 of all resources.

（2）Dynamic sharing incentive(DSI). Assume each user i contributes resources ik to a
common pool of machines, and that each can use at least the resources ik′（ ii kk ≤′ ）.

（3）Strategy-proofness (SP) [6]. Users should not be able to benefit by lying about their resource
demands. This provides incentive compatibility, as a user cannot improve her allocation by lying.

（4）Pareto efficiency(PE) [6]. It should not be possible to increase the allocation of a user
without decreasing the allocation of at least another user. This property is important as it leads to
maximizing system utilization subject to satisfying the other properties.

Theorem 1. TRDF satisfies the DSI property
Proof. DRF satisfies SI, while CDRF does not satisfies SI. TDRF takes with time-related

allocation strategy, so user who stays longer gets more allocation resources. An arbitrary user i gets
resources ik′ by algorithm 1 which is the exchange mechanism. The system will give resources

ik′ to user i in algorithm 2 which is TDRF, so TDRF satisfies the DSI property.
Theorem 2. TRDF satisfies SP property.
Proof. Let iC be the set of machines that user i can actually use. Let assume user i lies about

her constraints by claiming that she can use a set of machines iC′ . Let iA and iA′ be the
allocations of user i under constraints iC and iC′ . If user i lies about her constraints, then

833

≠iC iC′ and φ≠′ ii CA  . Which means that user i would get no benefit by lying and may hurt
other users, but won’t get any benefit since she cannot use these machines.

Theorem 3. TRDF satisfies PE property and TEF property.
Proof. The nature of the TDFR is still DRF. DRF satisfies PE property. Assume user i can

increase her dominant share, without decreasing the dominant share of anyone else. User i has at
least one saturated resource. There are two cases. If no other user is using the saturated resource,
then user i cannot increase her dominant share. If anyone is using the saturated resource, then user
i increase her dominant share result in decreasing the allocation of at least one user sharing the
same saturated resource. So user I cannot increase her dominant share or increase her dominant by
decrease the allocation of other users who have the same dominant share.

Experimental Results
In this section, we evaluate the performance of TDRF. The total resources are

R=(1r , 2r , 3r)=(1,1,1) in the system. User 1 joins the system at time t1 and leaves at time t3 with
)4.0,2.0,5.0(1 =k . User 2 joins the system at time t1 with)5.0,3.0,4.0(2 =k . User 3 joins the system

at time t2 with)2.0,6.0,1.0(3 =k . User 4 joins the system at time t4 with)5.0,2.0,2.0(2 =k . User 1
uses (0.2,0.1,0) per task with { }211 ,rrc = , user 2 users (0,0.2,0.2) per task with { }322 ,rrc = , user 3
users (0.1,0,0.3) per task with { }313 ,rrc = and user 4 users s(0.2,0.2,0) per task with { }214 ,rrc = .
Figure 1 shows the r1, r2, r3 and dominant resource allocation given to each user as a function of
time.

User 1 and User 2 join the system at t1. User 1 gets resources)0,2.0,9.0(1 =′K and user 2 gets
resources)9.0,3.0,0(2 =′K by resources exchange mechanism at time t1. User 1 leaves the system
at time t3 and user 3 joins the system at time t2. User 2 gets resources)9.0,3.0,0(2 =′K and user 3
gets resources)5.0,0,1.0(3 =′K by resources exchange mechanism at time t3. When user 4 joins the
system at time t4, user 4 gets resources)0,2.0,7.0(4 =′K .

834

Fig. 1. Different resources and dominant share for four users

Fig .2. Resources share

Resource utilization: We next evaluate the resource utilization of the proposed TDRF algorithm.
We take infinite users to join the system at different times. Fig.2 depicts the time series of resources
utilization.

Conclusion and Future Work
In this paper, we study the problem which is users arrive at the different times. We have

introduced Dominant Resource Fairness with Time Constraints(TDRF), a fair sharing model that
generalizes max-min fairness to multiple resource types. Users can exchange resources which are
user don not need for resources which are user need by exchange mechanism. TDRF think about the
time factor to improve the overall effectiveness of the system. If users stay the system more longer,
the resources which user contributes will be use more longer by other users. DRF satisfies SI , PE
AND EF, but violates SP. TDRF has lots of good properties, it satisfies DSI , PE and SP. While in
reality users are not all present in the system simultaneously, users which arrive at system at
different times are allocated resources unfair. Any user is allocated fair resources in TDRF.

As for future work, we use TDRF in the real system (e.g., Hadoop, yarn) and Dynamic
adjustment time constraints.

835

Acknowledgements
The work was supported by Chinese Natural Science Foundation Grant No.11361048,

References
[1] A.Ghodsi, M, Zaharia, S.Shenker and I.Stoica. EuroSys Vol. 23, (2013),p.78
[2] J.Dean and S.Ghemawat. MapReduce: Simplified Data Processing on Large Clusters.
OSDI’04,(2004)
[3] M. Zaharia, M. Chowdhury, M.J.Franklin, S.Shenker, I.Stoica. Spark: Cluster Computing with
Working Sets. HotCloud Vol.10,(2010),p.10
[4] R. Buyya,C. S. Yeo. Cloud computing and emerging IT platforms:vision,hype,and reality for
delivering computing as the 5th utility. Future Generation Computer System, Vol.25, (2009),p.599
[5] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D.Fetterly, “Dryad: distributed data-parallel programs
from sequential building blocks,” in Proc. EuroSys,(2007)
[6] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica, “Dominant
resource fairness: Fair allocation of multiple resource types,” in Proc. USENIX NSDL, (2011)
[7] B. Hindman, A. Konwinski, M.Zahria, A. Ghodis, A.D.Joseph, R.Katz, S.Shenker and I.Stoica,
Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center, NSDI (2011)
[8] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, A. Goldberg. Quincy: Fair
Scheduling for Distributed Computing Clusters, In SOSP, Vol.9, (2009),p.261
[9] M.Ambrust, A.Fox, R.Griffith, Above the Clouds: A Berkeley View of Cloud
Computing[EB/OL].(2011-01-25).http://www.eecs.berkeley.edu/pubs/techrpts/2009/EECS(2009)
[10] J.Mell, T.Grance. The NIST definition of cloud computing. [S.I.]:National Institute of
Standards and Techology,(2011)

836

