
Distances Tree as SVM Ensemble

in Digits Recognition Task

Marcin Luckner1

1Faculty of Geodesy and Cartography,
Warsaw University of Technology,

Plac Politechniki 1, 00-660 Warsaw, Poland.
email: mluckner@gik.pw.edu.pl

Abstract

This paper presents several algorithms
that creates a classification system
based on SVM classifiers grouped in
a tree structure. Analysis of similar-
ity between classes allows to reduce of
number of used SVM in comparison to
DAGSVM method without major re-
duction of an accuracy. Practical tests
of map texts recognition task are also
presented.

Keywords: Pattern Recognition,
SVM, decisions tree

1. Introduction

The SVM ensemble successful resolves
classification tasks. However a brief re-
view of them presented in Section 2
shows that their structure not depends
on a data distribution.

Distances trees are proposed as an
alternative to knows algorithm. In this
method a similarity between classes
is considered in creation of ensemble
structure. Three different algorithm
are proposed in Section 3.2. All of
them are tested in digits recognition
task and results are presented in Sec-
tion 4

2. Multiclass SVM ensembles

A single SVM classifier [1] splits a data
space binary. To resolve a multiclass
classification task, an ensemble of clas-
sifiers should be used. A review of
method for multiclass Support Vector
Machines is presented in [2].

The first group are methods that re-
solve a classification task as a single
optimization problem [1, 3]. Unfortu-
nately, a computation cost for those
"all–together" methods is too expensive
for a practical use. For that reason
"all–together" strategy will be not dis-
cussed in this paper.

The second group of methods use
"one–against–all" [4] strategy where
each class is represented by a single
SVM classifier. The classifier decides
that example is a member of analyzed
class or not. If more that one class
has a positive response a distance of
a point that represents the example to
a hyperplane defined by the SVM clas-
sifier is taken into consideration. The
method needs k classifiers to recognize
k classes.

A cost of the method can be reduced
if is implemented as a tree structure of
SVMs where each classifier splits data
space between a single class and the
rest of classes not separated on higher
levels. An application of the tree is

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 1

presented in [5]. The tree needs k − 1
classifiers to recognize k classes. What
more important, because a number of
separated classes is decreased on each
level of tree, also a number of sup-
ported vectors will be limited.

The last group of method relies on
"one–against–one" [6] strategy. Each
class is tested against each. The ba-
sic algorithm counts wins for each class
to select a winner. This method needs
1

2
k2−k classifiers to recognize k classes.

The number of classifiers is significant
larger from used in "one–against–all"
method. However, a splits are done be-
tween single classes and a number of
supported vectors should be reduced.

Methods based on trees and graphs
have been proposed to reduce a num-
ber of used classifiers. In the pa-
per [7] the strategy is implemented as
a bottom–up tournament tree. Ran-
dom paired classes described in leaves
are confronted and the winer goes up
in the tree. The class from the root is
a classification result.

More popular is an algorithm
based on Directed Acyclic Graph,
DAGSVM [8]. The graph is top–down
oriented. From a random ordered
classes the first and the second one
are confronted. On a lower level the
winner is presented against a next
class from the list. Finally, a class that
defeats all opponents is defined in a
leaf of the graph.

Both methods needs to create 1

2
k2−k

classifiers for k classes. However, in a
decision path only k − 1 classifiers is
used. An interesting innovation is pre-
sented in [9] where a distance between
classes is used to reduce a number of
data splits. For each class the rest of
classes is ordered by distance to con-
sidered class. A split between the class
and the first class in line is created. For
next classes a split is calculated if and

only if any of created hyperplane can-
not be used.

All presented algorithms [5, 7, 8] use
only a number of recognized classes to
determine a tree or graph structure.
Only in [9] also a distribution of classes
in a data space is considered to improve
a classification system. For that reason
a new solution based on a similarity be-
tween classes is proposed.

3. Distance SVM trees

Creation of distances SVM tree pro-
cesses in three steps. First, a distance
matrix is calculated for all classes.
For that a metric has to be chosen
and a distance between classes defined.
Those selections determine a structure
of a created tree. Each node in the
tree is connected with a SVM classifier
that splits a data space between exam-
ples determined by leaves those are the
node successors.

3.1. Classes similarity

As a measure of similarity between
classes a distance can be used. For a
small distance a similarity is high, for
a large distances similarity is low. A
distance between examples in classes is
defined by used metric, a distance be-
tween classes may CX and CY be de-
fined in several ways for example as a
distance between nearest elements:

d(CX , CY) = min
x∈CXy∈CY

d(x, y),

between farthest elements:

d(CX , CY) = max
x∈CXy∈CY

d(x, y),

the average from distances:

d(CX , CY) =

∑
x∈CXy∈CY

d(x, y)

nCXnCY
,

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 2

Fig. 1: One–against–all tree

the distance between centroids:

d(CX , CY) = d(

∑
x∈CX

x

nCX
,

∑
y∈CY

y

nCY
).

Where nCX and nCY are numbers
of elements in classes CX and CY .
The function d(x, y) is distance in cho-
sen metric calculated for elements of
classes CX i CY .

For large data sets the last definition
should be used to avoid calculation of
a huge distance matrix.

In described test an Euclidean met-
ric has been used. Tests for different
metrics are presented in [10].

3.2. Tree structure creation

algorithms

In this section various algorithm that
creates tree structure are presented.
All base on distances between classes.

3.2.1. One–against–all tree

This algorithm creates a degenerated
tree. Each node has at least one leaf
as a child. The tree is created by Algo-
rithm 1.

Distances between classes have not
influence into the tree structure. Al-
ways a degenerated tree is created.
However, an order of recognized classes
is changing.

Fig. 2: Grouping tree

Data:
Sc - set of recognized classes,
Md(Sc) - distances matrix for Sc
while c(Sc) > 1 do

Find a class Cm with the
maximum sum of distances to
the rest of classes;
Create a SVM that splits data
space between Cm and Sc \Cm;
Sc = Sc \ Cm;

end

Algorithm 1: One-against-all tree

3.2.2. Distance tree

A structure of distance tree bases
on classes similarity. In each step
nearest classes are grouped and a SVM
classifier that splits them is created.
Next, classes are replaced by their
union and the algorithm starts over.
The tree is created by Algorithm 2.

Data:
Sc - set of recognized classes,
Md(Sc) - distances matrix for Sc
while c(Sc) > 1 do

Find nearest classes
Cx, Cy ∈ Sc;
Create a SVM that splits data
space between Cx and Cy;
Sc = Sc \ Cx;
Sc = Sc \ Cy;
Sc = Sc ∪ {Cx ∪ Cy};
Update Md;

end

Algorithm 2: Distance tree

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 3

Fig. 3: Grouping graph

Because, a structure depends on a
distances matrix for different metrics
different trees will be created.

3.2.3. Distance graph

In the tree created in section 3.2.2 for
each class only the nearest class is se-
lected to create a split by a SVM classi-
fier. It is efficient strategy for recogni-
tion tasks with limited number of sim-
ilar classes. However, such structure
cannot be able to lift at least tree very
similar classes. Only for two of them
a split will be implemented directly.
For that reason a modified algorithm
is proposed.

Grouped classes will be no longer
rejected from a classes set. Already
used classes can be included into
next groups if level of similarity is
essential. To avoid of cycles a class
cannot be connected with their subset.
Because, a size of the classes set will
be not longer decremented a new stop
condition has to be implemented. The
modified algorithm is described in 3.

Data:
Sc - set of recognized classes,
Md(Sc) - distances matrix for Sc
repeat

Find nearest classes
Cx, Cy ∈ Sc but
Cx * Cy ∧ Cy * Cx;
Create a SVM that splits data
space between Cx and Cy;
Sc = Sc ∪ {Cx ∪ Cy};
Update Md(Sc) ;

until Cx, Cy found ;
Algorithm 3: Distance graph

In such tree nodes can be multi-
plied. Each duplicated node duplicates
its subtree. For that reason all in-
stances can be treat as a single instance
with more that one path from the root.
After such modification a tree becomes
a graph.

3.3. Learning SVM in node

Each node of tree is bound up with
a SVM classifier. If successors of the
node are leaves with connected classes
the classifiers split a data space be-

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 4

Fig. 4: Classification task: digs from
cadastral map

tween them. In other case for both
subtrees of node separated groups are
created from all leaves that are mem-
bers of subtrees. The split is calculated
between those groups.

If a structure is represented by a
graph there is a possibility that a leaf
is a member of both subtrees. In such
case a class connected with the leaf is
eliminated from both groups.

4. Tests

In discussed classification task one
class from 0 to 9 should be assigned to
a features vector. Recognized elements
are taken from cadastral maps such as
presented in Figure 4. For recognized
elements translation, scale and rotation
are normalized [11]. Next, low cost fea-
tures such as histograms and projection
are calculated.

From five sheets of cadastral maps
7081 elements have been extracted. 75
percent of them has been used as a
learning probe, the rest as a testing
probe. All presented results are ob-
tained for tested probe.

The classification task has been re-
solved by tree structures described in
section 3.2. For comparison also "one–
against-one" algorithm has been used.

For all SVM classifiers a linear kernel

Method
OAO OAA Tree Graph

Avg 95.75 93.35 93.02 95.25
Min 82.76 78.43 63.22 83.91
Max 97.94 97.67 97.01 97.76
Sdv 4.95 5.91 9.92 4.08
Svm 40 9 9 26

Table 1: Comparison of classification
methods.

has been used. A parameter C [12] that
determines penalization for elements
from learning set that are bad classified
has been arbitrary established to 10.

For the method "one–against-one" 40
classifiers has been created for 10 rec-
ognized classes. An accuracy was 95.75
percent.

A tree that implements a strategy
"one–against-all" has been created with
9 classifiers. The order of classifiers in
the tree structure depends on the av-
erage distance between classes calcu-
lated in Euclidean metric. The tree
presented in Figure 1 has 93.35 percent
accuracy.

The tree based on the algorithm pre-
sented in Section 3.2.2 also is based on
9 classifiers but its structure is not de-
generated. The average distance be-
tween classes calculated in Euclidean
metric was also used in this case. The
accuracy is only 93.02 percent. An
analysis of a misclassification matrix
shows that the main origin of errors is
in elements of the class 9 incorrectly
recognized as a class 3. As is shown in
Figure 2 those classes are not split di-
rectly by SVM classifiers but as mem-
bers of groups.

For a graph created by the algorithm
described in Section 3.2.3 a number of
classifiers depends not only on a num-
ber of classes but also on a similar-
ity of classes. For recognized classes

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 5

26 classifiers have been created. It is
much more that for trees algorithms
but still considerably less that for "one–
against–one" strategy. A structure of
the graph, presented in Figure 3 de-
pends on distances between centroids
calculated in Euclidean metric. An ac-
curacy is 95.25 percent which is nearly
as good as "one–against–one" method.
The misclassification between classes 9

and 3 has been reduced by the SVM01
classifier that splits ones directly.

5. Conclusions

As is shown in Table 1 distance graph
results are similar to "one–against–one"
method but with a significant reduced
number of used SVM classifiers. In
the future distance trees should be
compared with different methods that
takes distances into consideration in
the decision process [9].

References

[1] V. Vapnik. Statistical Learning

Theory. Wiley, New York, 1998.
[2] C. W. Hsu and C. J. Lin. A com-

parison of methods for multiclass
support vector machines. IEEE

transactions on neural networks,
13(2):415–425, 2002.

[3] K. Crammer and Y. Singer. On
the learnability and design of out-
put codes for multiclass problems.
In COLT 2000 Proceedings, pages
35–46, San Francisco, CA, USA,
2000. Morgan Kaufmann Publish-
ers Inc.

[4] L. Bottou, C. Cortes, J. S.
Denker, H. Drucker, I. Guyon,
L. D. Jackel, Y. LeCun, U. A.
Muller, E. Sackinger, P. Simard,
and V. Vapnik. Comparison of
classifier methods: a case study
in handwritten digit recognition.

Pattern Recognition, 2:77–82 o.2,
Oct 1994.

[5] S. Han, W. You, and H. Li. Ap-
plication of binary tree multi-class
classification algorithm based on
svm in shift decision for engineer-
ing vehicle. ICCA 2007 Proceed-

ings, pages 1833–1836, 2007.
[6] U. H.-G. Kressel. Pairwise clas-

sification and support vector ma-

chines, pages 255–268. MIT Press,
Cambridge, MA, USA, 1999.

[7] G. Guo, S. Z. Li, and K. L. Chan.
Support vector machines for face
recognition. Image and Vision

Computing, 19(9-10):631–638, Au-
gust 2001.

[8] J. Platt, N. Cristianini, and
J. ShaweTaylor. Large margin
dags for multiclass classification.
In Advances in Neural Informa-

tion Processing Systems 12, pages
547–553, 2000.

[9] R. Debnath, N. Takahide, and
H. Takahashi. A decision based
one-against-one method for multi-
class support vector machine. Pat-

tern Analysis and Applications,
7(2):164–175, July 2004.

[10] M. Luckner. Comparison of Hi-

erarchical SVM Structures in Let-

ters Recognition Task, pages 291–
302. Computational Intelligence:
Methods and Applications. Aca-
demic Publishing House EXIT,
Warsaw, 2008.

[11] M. P. Deseilligny, H. Le Men,
and G. Stamon. Character
string recognition on maps, a
rotation-invariant recognition
method. Pattern Recognition Let-

ters, 16(12):1297–1310, December
1995.

[12] C. Cortes and V. Vapnik.
Support-vector networks. Ma-

chine Learning, 20(3):273– 297,
September 1995.

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 6

