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Abstract:This paper introduces an 
approach for image segmentation by using 
pulse coupled neural network (PCNN), 
based on the phenomena of synchronous 
pulse bursts in the animal visual cortexes. 
The neighborhoods considering magnitude 
and distribution of the pixels are modeled 
into a factor to control the linking, further, 
control the internal activity. Segmentation 
criteria based on majority rule controls the 
process, and threshold adjustment within 
one iterative ensures the integrated result. 
Experiments on several types of image are 
implemented with the proposed method 
and the experimental results comparing 
with classical methods demonstrate its 
validity. 
Keywords: Pulse-Coupled Neural 
Network (PCNN); Image Segmentation; 
square neighborhood  

1.  Introduction  
Pulse coupled neural networks 

(PCNN) were introduced as a simple 
model for the cortical neurons in the visual 
area of the cat's brain. Important research 
in the 80's and 90's led to the 
establishment of a general model for 
PCNN [1, 2]. Such models are proved to 
be highly applicable in the field of image 
processing, a series of procedures being 
developed for contour detection and 
especially image segmentation [3-10]. 
Taking PCNN process into consideration, 
the performance depends on the proper 
selection of the parameters. Although 
some researches tried to find criterions to 

select adaptively parameters based on 
intensity statistical properties[11], image 
entropy[12] or other image quality 
indictor[13], holistic adjustment are 
insufficient to reach an optimal standoff 
between false negative and false positive. 
We propose an extended PCNN using fast 
linking, and make some improvements to 
extend PCNN to work effectively. Some 
parameters are adjusted based on its 
neighborhood for each pixel, and the 
neighborhood is modeled accurately to a 
ratio. We apply this PCNN to several 
types of image under various conditions of 
illuminations and demonstrate the 
effectiveness of this model through 
experiments. 

In the second section of this paper, the 
PCNN’s basic model and the fast-linking 
method are introduced. In the third section, 
the new approach for image segmentation 
based on fast linking is brought forward. In 
the fourth section, results of segmentation 
based on the proposed PCNN model are 
shown. 
2. THE PULSE-COUPLED NEURAL 
NETWORK 

2.1.  PCNN neuron model 
The Pulse-Coupled Neural Nets (PCNN) 
algorithm is based on the 
neurophysiologic models evolving from 
studies of small mammals. Shown in Fig.1, 
the PCNN will receive both stimulus by 
feeding and also inhibitory linking. These 
are combined in an internal activation 
system. Which accumulates the signals 

Proceedings of the 11th Joint Conference on Information Sciences (2008) 
                                          Published by Atlantis Press 
                                                    © the authors 
                                                                1



         

until it exceeds a dynamic threshold, 
resulting in an output. This alters the 
threshold as well as linking and feeding 
neurons, as will be described below. The 
PCNN produces a temporal series of 
outputs. Depending on time as well as the 
parameters, this dynamic output contains 
information, which makes it possible to 
detect edges, do segmentation, identify 
textures and perform other feature 
extractions. The PCNN can operate on 
different types of data since it is very 
generic to its nature. The algorithm is 
performed by continual iterations of the 
input and the output using the following 
equations: F channel and L channel 
combine in a second order fashion to 
cerate the total internal activity U, which 
is then compared to the dynamic 
neuromime threshold !  to create the 
output Y. If the internal activity U is large 
enough, then the neuron will generate a 
pulse. 

F
! , 

L
!  and 

!
"  are the decay 

constants of the PCNN neuron. 
F
V , 

L
V and 

!
V are the magnitude scaling terms. M and 
W are the synaptic weigh strengths 
defining the feeding receptive field and 
linking receptive field, respectively. The 
constant !  is the linking strength.  
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Figure 1.  PCN neuron 
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The image processing PCNN used in 

our experiments is a single layer two-
dimensional array of laterally linked 
neurons and all neurons are identical. The 
number of neurons in the network is equal 
to the number of pixels in the input image. 
There exists a one-to-one correspondence 
between the image pixels and neurons. 

2.2. Fast Linking Method  
In order to process actual images under 

various conditions of illuminations, we 
apply PCNN with "fast linking"[3], after 
the first signal is input, calculate all the 
output, and then refresh the linking 
territory. At last, the internal state is 
calculated, the output is decided. During 
the calculating process, if one of the 
neurons is changed, the linking territory is 
changed correspond. The calculation will 
continue until all the outputs are 
unchanged. Such cycle process is called 
one iterative. During this process, in order 
to keep the input unchanged, the linking 
territory will change constantly. The input 
wave transmit the data after one iteration 
is finished, while linking territory wave 
send information to all the elements of 
image during this iterative. This method is 
called Fastlinking. It can decrease the 
effect of timing quantification. The 
flashings in original model are all 
separated because the time delay of the 
linking territory. While adopting the 
Fastlinking model, the neuron can be 
flashed in one territory. Shown in Fig 2. 

In the model of PCNN, the linking 
coefficient !  plays an important role. The 
larger !  is, the further distance is 
transmitted. It can be obviously seen in the 
Fastlinking model. Figure 3 shows the 
segmentations of different ! . It also can 
be seen from Figure3 (b) and (c), for the 
connected region, the value of !  
influences the amount of neurons. 
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Figure 2. Fastlinking model 

In the model of PCNN, the linking 
coefficient !  plays an important role. The 
larger !  is, the further distance is 
transmitted. It can be obviously seen in the 
Fastlinking model. Figure 3 shows the 
segmentations of different ! . It also can 
be seen from Figure3 (b) and (c), for the 
connected region, the value of !  
influences the amount of neurons. 

   
(a) Original image   (b) 0.2! =     (c) 5! =  

Figure 3. Segmentations with different !  

3 Neighborhood inspiring factor 
To illuminate the model clearly, we 

define an image I as a pair (I, I) consisting 
of a finite set I of pixels (points in I), and a 
mapping I that assigns to each pixel a 
pixel value I(p) in some arbitrary value 
space. 
3.1 Neighborhood Coherence Factor  

In most image-processing applications, 
it is justified to group the nearby pixels 
together since they are more likely to 
belong to the same region. Generally 
speaking, this cue is characterized by their 
spatial distance on the image plane. The 
formal mathematical description 
is I!"# qpqpd ,,),( ñ , where 

),( qpd denotes the Euclidean distance 
and ! is a specified constant [14]. For a 
fixed central pixel p, that 

{ }: ( , ) , , IpN q d p q p q!= " # $  represents a 

neighborhood of the pixel p. Here we 
apply the definition of the 1/r kernel of 
PCNN as the neighborhood. The formal 
mathematical description same as in  [15] 
is 

{ }( , ) : , ,p q q q p q pN q x y x x y y q! != " # " # $%  

Suppose that the square neighborhood of 
each pixel is given, there are predicatively 
the pixels in the set 
   { }: ( ( ), ( ))p pq N d I p I q !" = # $                  

 (6) 
and the pixels in the set 
 { }' : ( ( ), ( ))p pq N d I p I q !" = # >                   

(7) 
for an arbitrary threshold 0!" , where 

'

p p pN! "! = and ( ( ), ( )) ( ) ( )d I p I q I p I q= !      
(8) 
is a pixel-value difference measure. Here, 
a pixel in p! is a ! -similar neighbor 
( SN! ) of p . If the intensity difference 
between a central pixel p and its 
neighboring pixels is very small (below a 
threshold ! ), it is conceivable that pixel p  
will be an interior point of one interested 
region and could be taken as a seed pixel 
used to grow the region. In contrast, if the 
intensity difference between the central 
pixel p and its neighboring pixels is rather 
high (greater than a threshold ! ), the p 
would be out of one planar surface and 
lose the growing ability. Intuitively, if the 
number of neighboring pixels with the 
intensity values approaching to the central 
pixel’s exceeds those far away from the 
central pixel’s, we say that the central 
pixel could also be taken as a seed because 
the similar or coherent pixels within its 
neighborhood are in the ascendant. 
Motivated by this phenomenological 
explanation of image formation, we now 
define one neighborhood coherence factor 
(NCF) as follows: 

      NCF( ) p

p

p
N

!
=                                  
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    (9) 
where • refers to the cardinality of a set, 
i.e., the number of elements in a set. It is 
defined to be the ratio of the number of 
pixels having the similar intensity with p 
to the number of pixels having the distinct 
intensity with p. Obviously, this value is 
quite discrepant for different pixels. When 

'

p p! " ! , NCF( ) 0.5p !  . In such a 
situation, p is similar to most of its 
neighboring pixels. When 

'

p p! < ! , NCF( ) 0.5p <  . That implies few 
of its neighboring pixels are similar to p. 
Therefore, we can say that NCF( )p  is 
actually an ! -similarity between p and its 
surrounding pixels with respect to ! . In 
[14], NCF( ) 0.5p !  implies the similar 
pixels will predominate over a handful of 
discontinuity pixels with sharp varying 
intensity values. Similarly, when 
NCF( ) 0.5p < the discontinuity pixels with 
sharp varying intensity values will 
predominate over the minority similar 
pixels.  
3.2 Pixels captured  

In PCNN model, the pixels with 
higher intensity than threshold pulse 
firstly. Here, we denote the set of these 
pixels as SEEDs: 
   { }SEED : ( ) ,p I p T p= ! "#                       

  (10) 
Where T is the threshold. These pulsed 
pixels will capture their neighbor pixels 
through the linking field. The linking is 
determined by W, M and !  .  In the 
classical fastlinking models (J.L. Johnson), 
the linking is generally assumed to be a 
constant. If 1/r kernel is applied, W and M 
are both defined as kernel matrix rK _ : 

2 2

1
( )

1/ sqr(( ) ( ) )

r

r r

k l C
K_r k,l

k C l C otherwise

= =!"
= #

$ + $"%
 

where round( / 2)rC r=  . !  is also set a 
constant. That means the pixels with 
stimulus below one certain value will not 
be captured whether they are belong to the 

object or not. So the results of these 
models, as shown in figure 3, shows that 
all the pixels are not segmented in one 
iterative.  

If p is a SEED in iterative i, q is one 
of its neighbors, Sq(i) is the feeding of q, 
T(i) is the threshold, the linking is : 
( ) [ 1]
q L
L i V WY i= !" , Then its internal 
activity is  ( ) ( )(1 ( ))q q qU i S i L i!= + .   If q 
will be captured, the following equation 
should be satisfied: 

( ) ( )(1 ( )) ( )q q qU i S i L i T i!= + "                 
(11) 
That means if ( ) ( ) (1 ( ))q qS i T i L i!" + , q will 
be captured even though there is single 
pixel pulsed in its ! -neighborhood. 

With the analysis detailed in section 
3.1 and 3.2, when NCF( ) 0.5p ! , the  p is 
usually deemed to be ! -similar with its 
neighbors, i.e., the intensities of majority 
pixels surrounding vary slowly; when 
NCF( ) 0.5p < , p is distinct from its 
neighbors, i.e., the intensities of majority 
pixels surrounding vary sharply. Further, 
the pixels with NCF( ) 0.5p ! , together with 
its nearest neighbors, would delineate all 
or part of an object with a high 
probability. Alternatively, the pixels with 
NCF( ) 0.5p <  always lie between two 
different objects which may be the image 
border or the noise and some shadow 
boundaries. 

Now, we define square neighborhood of 
q 

{ }( , ) : ( ( ), ( ))qq p s N d I s I p !" = # $     and 
{ }!>"=# ))(),((:),(' pIsIdNspq

q
  

then modify the neighborhood coherence 
factor of q: 

( , )
NCF( , )

p

q p
q p

N

!
=  

Considering the influence of the 
distribution of SN! s, the limit of the 
partition is shifted to 0.6. Videlicet, the 
pixel q with NCF( , ) 0.6q p !  should be 
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captured. If NCF( , ) 0.6q p < , considering the 
pixels in corners of the objects, q is 
treated in two ways:1) if NCF( , ) 0.3q p ! , q 
will not be captured; 2) if 
0.3 NCF( , ) 0.6q p< < , this implies it has 
three SNs! . Whether it is captured or 
not depends on the distribution of 
its SNs! . If the SNs!  locate close, as 
P2 in figure 4, it should be captured. 
Alternatively, if its SN! s distribute 
sporadically, as P3 in figure 4, it should 
not be captured. 

Q
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13121110987

650 432

27
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P3

41

42

403938373635

343332302928
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Figure 4 Illustration of the neighborhood 

The measurement of the spatial 
dispersion of the SN! s can be carried out 
with their spatial dispersion factor  (SDF): 

1 1
SDF( )

SDR1( ) SDR2( )
q

q q
= !                    

(12) 
Where )SDR1(q and )SDR2(q are named 
as space distance ratio (SDR): 

( )

1

ave( ( SN )) (1) ( (1) 1)

SDR1( )

ave( ( ))
p

k P P

k

N

i p

i

d N N

q

d s N

!

=

" #

=
$

$

  

(13) 

where 
1

ave( ( )) ( , )
pN

i i j p

j

d s d s s N
=

=!  is the 

average distance between si and other 
neighbors, which is anyone in pN  ; 

( )( )
(1)

1

ave( ( SN )) ( SN , SN ) (1) (1) 1
pN

k k l p p

l

d d N N! ! !
=

= " #$

 is the average distance between SN
k

! and 
other SN! s, which is anyone in SN!  set, 
named as (1)

p
N ; • is same as in Eq.(9). 

P

p

1

( SN , ) N (1)

SDR2( )

( , ) N

k

k

i

i

d q

q

d s q
!

"

=

=
#

#
                       

(14) 

We can discover that SDR1 is competent 
for measurement of dispersion of SN! s, 
and SDR2 for distance to q.  

Some SDFs corresponding to certain 
neighborhoods are shown in table 1. 
Obviously, if SDF( ) 1q ! , the SN! s of q 
distribute closely and near to q. 
Alternatively, the pixels with SDF( ) 1q < , the 
SN! s of q distribute sporadically and 

away from q. 
Now, we define neighborhood 

inspiring factor (NIF): 
NCF( , ) / 0.3 NCF( , ) 0.6

NIF( ) SDF( ) 0.3 NCF( , ) 0.6

0 NCF( , ) 0.3

q p q p

q q q p

q p

!"
#

= < <$
# %&

     

(15) 
With the analysis detailed above, NIF(q) is 
more comprehensive evaluation of pixels 
neighborhood. Table 1 shows the values 
of NCF, SDF and NIF corresponding to 
certain neighborhoods. SN!  indexes in 
the last row are according to Figure4.     

When NIF( ) 1q ! , q is ! -similar with 
its neighbors.  If q is one of the ! -
neighbors of a pulsed pixel, it is expected 
to be captured.  The pixels with 
NIF( ) 1q < always lie between two different 
objects which may be the image border or 
the noise and some shadow boundaries. 
They are expected not to be captured even 
if they are the ! -neighbors of pulsed 
pixels.  

We modify the linking of the 
fastlinking model within one iterative 
( ) NIF( ) [ 1]
q L
L i q V WY i= !"                    (16) 

causing the change of the internal activity 
U. If we define 

( ) ( )qS i T i! = "                                     (1
7) 

                   
Table 1 NCF, SDF and NIF corresponding to 

certain neighborhoods 
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If q is ! -similar with a pulsed pixel p, 

and if NIF( ) 1q ! , according to eq.(11), 
( )

q
U T i! , q will be captured by p. the 
lager NIF( )q is, the stronger linking is. 
Alternatively, if NIF( ) 1q < , ( )

q
U T i< , q 

will not be captured. That means q will be 
captured only if it is one ! -neighbors of 
some pulsed pixels, at the same time, it is 
! -similar with its neighbors.  

To ensure the “waves” move to the 
edge of the objects, we reduce the 
threshold by step / 255! within one iterative. 
The threshold reduced is just for the 
neighborhoods of the pulsed pixels. In fact, 
!  need not be restricted by eq(17). A 
small offset may cause little difference in 
results. This will be discussed later. 

      
(a)                       (b)                           (c) 

Figure 5 Illustration of  NIF : (a) original image;(b) 
NCF values of image pixels ( 7=! , 10=! );(c) 
NIF of image pixels 

4. precise segmentation using PCNN  
4.1 neighborhood inspiring PCNN 
(NIPCNN) 

Let the image after each iterative save 
in matrix Tsave. The detailed steps are as 
followed: 

Step1: Initialization  
• Let the unitary image greyhound 

value as the impulse signal Sij; 
• Initialize the parameter of the net;  

• Set the maximum iterative times nmax 
= 30. 

Step2: Let iterative variable n = 1 
Step3: Fastlinking processing: t is the 

iterative variable 
a)    Let tmax=20; t=1; 
b) Let the adjusted threshold 

Ta(t)=T(n); 
c) The first iterative t=1, from 

(1)~(5),calculate each PCNN 
internal and output part, then put 
the result in  ( ) ( )t

ij
Y n ; 

d) Find out the pixels pulsed in this 
sub-iterative, and calculate NIF of 
their neighbors;  

e) Calculate the linking of these 
neighbors with Eq.(16); 

f) Calculate the internal activity of 
these neighbors and compare 
with ( )

a
T t , then affiliate the output 

into ( ) ( )t

ij
Y n . 

g) ( ) ( ) ( )
a a
T t T t N != " , where ( )N ! is 
the normalization of !  

h) t=t+1; 
i) If t<tmax then move to step c); 

otherwise output Yij(n).  
Step4: n=n+1. Tsave= Yij(n). 
Step5: If n < nmax, then move to step 

3; otherwise end and output Tsave, which 
is the result of segmentation. 
4.2 Parameter Sensitivity to Segmentation 
Quality 

As analysis in section 2.2, the effect 
of fastlinking model depends on the 
parameters. Appropriate parameters are 
determinant to the correct segmentation. 
Thus, adjustments for parameters according 
to each image ensure accurate result. 
Confessedly, it’s a fussy task. Relatively, 
parameters have less influence on the effect 
of NIPCNN. Besides the parameters of the 
fastlinking, one new parameter, ! , is 
adopted into NIPCNN. The parameters 
inherited from fastlinking model are set 
same for all the images. r is set a constant, 
r =7 in this paper. As mentioned before, !  
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is not restricted strictly by eq.(17), small 
deviation may not cause obvious diversity 
of the segmentation. To elaborate this 
problem, we would come back to the 
image “Bird” shown in Fig. 5(a). Fig. 6 
shows how the segmentation result varies 
with ! . It is known from the result, the 
larger ! is, the farther the “wave” transmits, 
the more pixels pulse. That means larger 
area segmentation, shown in fig.6(a). It 
should be mentioned that too large may 
result in over-segmentation, contrarily, too 
little !  results in undersegmentation, 
fig.6(d).  

So the larger !  is suit for the images 
with the object intensity in wide range. 
Ideally, we wish to form three groups of 
pixels that belong to visually distinct 
regions such as the branches, the 
background and the bird.  

 

    
(a)                 (b)               (c)                 (d) 

Figure 6 How the segmentation result varies with ε.  
From left to right 20=! , 15=! , 10=! , 3=!  

5 Experiments and discussion 
To evaluate our proposed method, in 

this section, we, thus, experimentally 
carry out extensive comparisons with 
fastlinking model (J.L. Johnson), 
Threshold Segmentation and Edge 
Segmentation (Gauss operator) on two 
types of data. One is the synthetic images, 
including two synthetic noisy images and 
three synthetic uneven lighting images; 
the other is a collection of natural images 
coming from the Berkeley Segmentation 
Dataset and some empirically usual tested 
image database. Both contain a variety of 
images covering a wide range of 
viewpoints and illumination angles. In 
both experiments, only grayscale 
information between 0 and 255 is used. 
Appropriate setting of the parameters is a 

prerequisite for successful segmentation. 
To make a fair comparison, we tune them 
over a wide range of values and carefully 
select “optimum” so that each method 
presents the perspectively best results 
among the numerous different partitions 
for each image. Except for ! , the 
parameters of the NIPCNN and 
Fastlinking are same, shown in table 2. 
As analysis in section 2.2, ! is an 
important parameter for fastlinking model, 
so we select according to each image. But 
in NIPCNN, it is Fixed value 5.0=! . 
The parameters of methods based on 
threshold, Gaussian are T (threshold),  and , 
respectively. 
Table 2. Parameters of NIPCNN and Fastlinking 
model 

F
!  

L
!  

!
"  

F
V  

L
V  

!
V  r  

0.001 1 10 0.01 1 2 7 
 5.1 Experiments on Synthetic Images 

In this subsection, to assess the 
effectiveness of our algorithm for 
segmentation tasks, we first perform some 
experiments on synthetic images: the 
objects with large range of intensity and 
synthetic noisy images. Figure 7 offers 
some examples. From up to down, the 
first row is segmentation for ideal image, 
with clear contours, even background and 
smoothly varying intensity; the second 
row is segmentation for image degraded by 
uneven lighting; the last two rows are 
segmentation for Gaussian noisy image 
(mean 0, standard deviation 35 and 25.5 
respectively).  
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(a)           (b)            (c)               (d)         (e) 
Figure 7 Segmentation on synthetic images, from left to 
right: (a) input images, (b) segmented images by 

NIPCNN, (c) fastlinking model, from up to down, 3=! , 
1=! , 3=! , 1=! , (d) Threshold, from up to down, 

T=100; T=212; T=128;  T=211 (e) Gaussian. 
  For images with objects sharply 

distinguished from background, 
segmentations based on threshold and edge 
show validity on the premise of 
appropriate parameters selection. It is a 
pity that, these classical methods are slack 
for noised images or images with uneven 
background. From the experimental data, 
the results of NIPCNN are obviously more 
integrated than classic fastlinking model. 
In some cases, the integrated segmentation 
as achieved by NIPCNN may be gotten by 
the fastlinking in cost of adjusting the 
parameters. But it is a fussy task to adjust 
the parameter according to each image. 
Especially, advantage of NIPCNN on 
noised images is noticeable. In the mess, 
NIPCNN has advantage on these synthetic 
images. 

 
5.2 Experiments on Natural Images 

The natural images are more 
challenging in that they contain significant 
variations in scale, illumination conditions 
(sunny versus overcast), material 
appearance, and sensor noise. The difficult 
phenomena of shadows, multiple scales, 
and translucent vegetation are ubiquitous. 
We wish to segment the natural images 
into several spatially coherent groups of 
pixels corresponding to physically objects 
in the natural world. Here, the 
representative sample images are divided 
into two types. One type contains the 
images composed of the objects include 
long, thin lines and the background has 
large homogenous areas, such as the 
handwriting and branches. The other type 
comes from the Berkeley Segmentation 
Dataset which contains a wide range of 
subject matter, such as the translucent 
water with surface ripples, the plane in the 
clouded sky, the birds in the sparse branch, 

etc. 
In general, our target for this type of 

images is to correctly extract the objects 
from the complex uneven lighting 
backgrounds or equivalently separate the 
backgrounds from the objects. Fig.8 shows 
the segmentation results for these images. 
From left to right, the five columns show 
the input images [Fig. 8(a)], segmented 
results by NIPCNN, Fastlinking , 
Threshold and Gaussian, respectively. It 
can be seen that NIPCNN separates the 
complex background [the black area of 
Fig. 8(b)] well from the objects [the white 
areas of Fig. 8(b)]. In contrast, Fastlinking, 
Threshold and Gaussian are disabled by 
such images. Too small â will result in 
incomplete extraction, while larger â will 
result in unreasonable segmentation. The 
noise or speckles in the background will 
raise error rate of Threshold and Gaussian 
method. This sufficiently indicates that 
NIPCNN is promising for dealing with these 
challenging images under the condition of 
uneven lighting. 

 
 (a)              (b)               (c)          (d)             (e) 

Figure 8 Results for several natural images. (a) input 
images, (b) segmented images by NIPCNN, (c) 

Fastlinking(J.L. Johnson), 8=! , 10=! , 3=!  (d) 
Threshold: T=105,T=68,T=114 (e) Gaussian. 

 
 (a)             (b)            (c)          (d)                (e)          
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Figure 9   Results for several natural images coming 
from Berkeley database. From left to right, they 
respectively are (a) input images, (b) segmented images 
by NIPCNN, (c) Fastlinking(J.L. Johnson), from up to 

down, 1=! , (d) Threshold, from up to down, T=49, 
T=59, T=220, T=108, T=65 (e) Gaussian.  
 
6. CONCLUSION 

In this paper, a method for image 
segmentation by PCNN has been proposed. 
As in most of the methods using a similar 
classification mechanism, the derivation of 
the proposed approach is based on a 
neighborhood dominant analysis, in which 
two factors are defined to measure the 
neighborhood distribution. The 
combination of two factors is also measure 
of dissimilarity between the informational 
contents of segmentation classes, and as a 
result, between these contents. Then, 
linking is adaptively modified according to 
the neighborhood. Cooperating with 
adjustment threshold within one iterative, 
the integrated segmentations for different 
images are achieved with same parameters. 
Experimental comparison with classical 
Fastlinking model (J.L. Johnson) and 
segmentation based on threshold and edge 
verified the method.  

It should be pointed out that, the 
parameters in this paper may not suit for 
all images, especially for the images with 
obvious texture in the objects should be 
segmented, or the images with 
inconspicuous contours. For these types 
images, !  should be adjusted according to 
each statistical feature of intensity. This is 
the future work of the present study.  
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