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Abstract. To solve the problem of target detection in heavy sea clutter, we make simulation study on 
a subspace-based clutter suppression method to improve signal to clutter ratio in the predicted target 
location, and thus to improve the detection performance. With the compound Gaussian model of the 
sea clutter, we first estimate the statistics of sea clutter by Expectation-Maximization (EM) algorithm, 
then exploit a subspace-based approach to further mitigate sea clutter. With the algorithm, the 
computational complexity is effectively reduced. Nonetheless the algorithm exhibits good 
performance of clutter suppression. Numerical results show that the algorithm is effective in sea 
clutter suppression. 

 
Fig.1 The structure of clutter suppression system. 

Introduction 
The detection technology for the sea surface targets with radar is widely used on marine safety, 
maritime rescue, etc. It is very important in both military and civil areas. The biggest challenge for the 
detection of small targets on sea surface for surveillance radar is heavy sea clutter. The small targets 
mainly refer to small boats, sea-skimming missiles and drifting mines drowned in heavy sea clutter. 
With the normalization of non-war military actions such as naval escort, sovereignty declaration, 
daily training, etc, the security of our naval ships is often threatened by the small targets. In the 
environment of low SCR which is caused by low RCS of targets, low grazing angles and high sea 
states, etc, the function of Radar detection decreases seriously and it can’t meet the requirements of 
application. So how to reduce the influence of sea clutter on targets detection has become one of the 
hotspots in the field of radar signal processing. 

Some progress has been made on using statistical properties of sea clutter to suppress the clutter [1, 
2]. For example, methods of application technologies such as time-frequency analysis [3], wavelet 
transform [4] and neural network [5] have been applied into clutter suppression. However the 
computation burden of these methods is high in engineering practice and it can’t meet the 
requirement of real time processing for radar. For the sea clutter suppression algorithm which can be 
used in practical equipments, it must not only fit the requirement of instantaneity, but also has enough 
good property on clutter suppression. Actually these algorithms are few. Therefore, we present a 
subspace-based sea clutter suppression method in this paper. It maps the echo signal of sea clutter 
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into low order subspace to suppress the clutter [6], and makes radar easily find the targets. Thus the 
detection performance is improved effectively. 

In this paper, firstly we provide the model of echo signal and sea clutter, and estimate the statistical 
property of sea clutter by Expectation Maximization (EM) algorithm. Secondly, with the subspace 
method we map the echo signal of sea clutter into low order subspace to suppress the clutter. Finally, 
we check the validity of the algorithm by numerical simulation.  

Model of Echo Signal 
The structure of clutter suppression system is shown in Fig. 1. K  pulses of the echo signal 

constitute a pulse train. With the pulse train, we can get the statistical property of sea clutter. 
Assuming there are a mass of clutter scattering sources in radar operation environment, and they are 
distributed uniformly in range-Doppler cells. In one dwell time of the beam, the compound reflection 
coefficient from the i th clutter scattering sources to K  transmitting pulses can be expressed as 
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Supposing in each range cell, the amount of clutter scattering sources, time delay and Doppler shift 

is constant in dwell times. However, its complex reflection coefficient is randomly fluctuating, 
because any small change in range (about the scale of radar wave length) may lead to a large change 
in the phase of echo signal [7]. 

In Fig. 1, the echo signal ( )mr t  is: 
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where, mb , 0t  and 0v  are the target’s complex reflection coefficient, time delay and Doppler shift to 
the m th pulse; it  and iv  are the time delay and Doppler shift of the i th clutter scattering source; 

( )n t  is additive noise. The target is assumed to be a point target [7], and the fluctuation characteristic 
meets Swerling Ι model. The complex reflection coefficients 0 1 1[ , ,..., ]Kb b b −=b  obey 
Gaussian distribution 2~ (0, )KCN σb I , where KI is a K K× unit matrix. As we mainly consider 
the low SCR environment, the covariance of target complex reflection coefficient 2σ  is small, and 
thus sea clutter becomes the dominant component of the echo signal. Therefore we ignore the 
influence of additive noise since we only consider the transmitting signal with short duration time, 
and its Doppler resolution is poor. So we can ignore Doppler processing of the echo. 

Sampling ( )mr t  with the rate of sf , we get the sequence [ ] ( / )m m
sr n r n f= . The echo signal 

sequence after matched filtering is expressed by m
nr . The output vector of the jth time delay or range 

cell is 1 0 1 1[ , , , ]K K T
j j j jC r r r× −∈ =r  ，the expression is  
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where n∏  is the clutter scattering sources set in the first n  range cell, sN  is the length of transmitting 
signal， 0n  is the index of range cell in which the target is located, [ ]sz n  is the self-correlation 
function of transmitting signal [ ]s n  defined as  
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Independent scattering sources can be considered as an ultimate situation in which the number of 
the clutter scattering centre on the sea increases progressively, and it can produce a total effect to the 
echo signal of sea clutter [8]. Therefore, we regard all the independent scattering sources in each 

1470



 

range cell as a whole scattering source, therefore the complex scattering coefficient of clutter 
scattering sources in the nth range cell is 
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At the moment, the echo signal can be simplified as: 
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We can see from (6) that we must know the statistical characteristic of sea clutter to process the echo 
signals. Therefore, it’s necessary for us to establish a model which can express the statistical 
characteristic of sea clutter accurately. 

Model of Sea Clutter 
For the early low resolution radar, we commonly suppose that the amplitude of clutter obeys 

independent identically distributed Gaussian distribution. However, when the resolution is high 
enough, the sea clutter has non-Gaussian characteristics such as a serious ‘Smearing Effect’ and 
asymmetry. Thus the Compound-Gaussian Model [9] with smearing has drawn a great deal of 
attention. It is appropriate to describe the clutter’s statistical characteristic of high resolution radar 
theoretically and empirically.  

According to the Compound-Gaussian Model, sea clutter is consisted of two components. One is 
small scale structure, and its properties are short related time and spatial independence, named with 
speckle. Speckle is a rapid fluctuant component, corresponding to the clutter’s partial scattering, 
which obeys Gaussian distribution. It is mainly affected by capillary waves which are close to the sea 
surface. The other is large scale structure, named with texture. It is a slow fluctuant component, and it 
can modulate speckle. Texture reflects clutter’s local average power, and it is affected by sea states, 
wind, stream and so on. Also it has longer correlated time.  

In Compound-Gaussian Model, the complex scattering reflection of the ith clutter scattering 
source [10] is 

i i iT=y S                                                                     (7) 

where speckle 1K
i C ×∈S  is a stationary complex Gaussian process with mean value zero and 

covariance K KC ×∈Σ . The texture 0iT ≥ , is a nonnegative random process.   Given the texture iT , 
speckle covariance matrix Σ , ~ (0, )nCN Tny Σ  and the complex scattering coefficients of two 
scattering sources iy  and jy  are mutually independent [7], we have 

( , | , , ) ( | , ) ( | , )i j i j i i j jp T T p T p T=y y Σ y Σ y Σ                                         (8) 

Compound-Gaussian Model can not only describe the amplitude measurements characteristic of sea 
clutter, but also simulate the temporal and spatial correlations of sea clutter. Thus it is appropriate to 
be used in describing the sea clutter of high resolution radar that is working at low incidence angles 
and high sea states [7]. 

Statistics Estimation of Clutter 
The existing statistics estimation of clutter are mostly realized by estimating the correlation 

parameters of clutter models [11]. Here we directly estimate the texture of clutter and the covariance 
matrix of speckle Σ  in Compound Gaussian Model. 
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Assuming the target is located in the jth range cell, then the clutter’s statistics characteristic can be 
estimated as 

2( 1) 2( 1){ ,..., ,..., , }
s sj N j j NT T T− − + −Θ = Σ                                                 (9) 

Although texture is a random process, we have supposed that it is constant in the whole dwell time, 
and it is a definite but unknown variable in each range cell.  

It’s a multiple to one mapping between the complex scattering coefficient of clutter and the output 
vector of matched filter, and it’s irreversible. Therefore, given the echo signal, we can only get the 
maximum likelihood estimate of Θ . The observation data of radar can be expressed as:  

( 1) ( 1)[ , , , , ]r r r r H
j N j j N− − + −=                                                (10) 

Then the maximum likelihood estimation of Θ  is 
ˆ arg max ( ; )rp

Θ
Θ = Θ                                                       (11) 

where ( ; )rp Θ  is the probability density function of observation vector r  which is depended on 
clutter’s estimator Θ . The maximization operation in (11) is complicated multi-dimensional 
searching, and it’s hard to calculate. Using EM algorithm instead of multi-dimensional searching to 
estimate Θ  can reduce the computation load. Using an unobserved self-contained data instead of an 
observed uncompleted data vector r , the unobserved self-contained data is expressed as 

2( 1) 2( 1)[ ,..., ,..., ]y y y y
s s

H
j N j j N− − + −=                                            (12) 

where 0[ ]j j nδ= + −y y b ,  ][⋅δ  is Kronecker function, b  is the complex reflection coefficient of 
target, y j  is the clutter’s complex reflection coefficient in the jth range cell. Then the maximum 
likelihood estimation of Θ  is 

ˆ arg max ( ; )p
Θ

Θ = Θy                                                      (13) 

Here we can use EM algorithm in [12] to estimate the time-varying statistical characteristic of sea 
clutter. 

Clutter Suppression Algorithm 

Subspace-based Clutter Suppressions. The subspace method for clutter suppression generally 
assumes that most power is concentrate on a low order subspace [12]. By mapping the echo signal 
orthogonally to the low order subspace of clutter, we get the orthogonal signal. In the orthogonal 
signal, the ratio of clutter decreases and then the target SCR increases obviously.  

The covariance of echo signal rj  is 
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Because the complex reflection coefficients of target meet 2~ (0, )KCN σb I ，the model of sea 
clutter is a Compound-Gaussian Model, and then (14) can be simplified as 
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where scalar 
1

2

( 1)
[ ]

s

s

N

j j n s
n N

T z nβ
−

+
=− −

= ∑ is a function which is decided by the transmitting waveform. 

From (15) we can see that the feature space of sea clutter is the same as that of speckle. Therefore the 
feature space of sea clutter can be obtained from estimated eigen-decomposition of Σ̂ .  

Let the matrix c eQ K N∈ × ，its column vector is the eigenvector of ∑ , and eN K< ( K is the 
number of eigenvalues for Σ ). Then cQ K K⊥ ′∈ × , eK K N′ = − . The column vector is the 
remaining feature vector of Σ . Then, by orthogonally mapping the echo signal to the low order 
subspace of clutter, we can decrease the power of sea clutter and get the echo signal after clutter 
suppression as  

 r r
H

j c jQ⊥ ⊥=                                                             (16) 
Numerical Simulation. The sea clutter component in the echo signal rj is contributed by about 

4000 clutter scattering sources, and there are averagely 20 clutter scattering sources in each range cell. 
They are uniformly distributed in Doppler frequency [-1,1]kHz. The transmitting signal ( )s t  is LFM 
pulse with fixed parameters whose bandwidth is 50MHz, and the pulse width is 2μs. In addition, the 
transmitted pulse have unit energy, and 10K = . The pulse repeat interval is 100μs, and so the length 
of each sub-dwell time is 1ms. In the de-correlated time of the speckle, the varying of sea clutter 
statistics is not much. The sampling frequency sf  is 50MHz, and the number of sampling points is 

100sN = . The complex reflection coefficient of target echo is derived by sampling from a zero-mean 
complex Gaussian process whose covariance matrix is 2

kσ I . 
After getting the statistical characteristic estimate of sea clutter, we use the sub-space method to 

implement clutter suppression. Fig. 2 shows the echo signal after clutter suppression, where 2
rj  and 

2
rj
⊥  are the 2-norm or modulus of the original echo signal and the echo after clutter suppression, 

which are in the range cell where the target is located and its 200 adjacent range cells. 
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Fig.2 Comparison between echo signals before and after clutter suppression. 

The asterisk symbol (*) in Fig. 2 indicates the range cell which the target is located in. In the 
original echo signal, the target is drowned in sea clutter. If we do not use the clutter suppression 
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algorithm, it’s hard to find the target. However after clutter suppression, the signal to noise ratio 
(SNR) is improved obviously. Simple matrix operation is used in the subspace-based method, and 
thus the computation burden is not hard. Thus it’s good to improve the detection performance for the 
targets drowned in sea clutter. Consequently, through simulation results we can see that the algorithm 
based on statistics estimation and subspace method is effective in suppression of sea clutter. 

Conclusion 
We study a subspace-based clutter suppression method to improve SNR of radar echo wave in this 

paper. With compound-Gaussian model to describe the clutter statistical characteristics which is in 
low incident angle and high altitude condition, and using EM algorithm to estimate the clutter 
statistics which is in the predicted target location and its adjacent cells. Using maximum likelihood 
estimation to get the expression of low order subspace of clutter, and orthogonally mapping the echo 
signal to the subspace, we obtain the orthogonal signal with clutter well suppressed. The signal can 
not only increase the SCR of the range cell where the target is located, but also decrease the 
computation load by mapping the data to a low order subspace. Simulation results show that the 
algorithm is effective to be used for sea clutter suppression. 
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