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Abstract. Thanks to its hierarchical and generative nature, Deep Belief Network (DBN) is effective 
to feature representation and extraction in signal processing. In this paper, DBN is investigated and 
implemented to monaural speech separation. Firstly, two separate DBNs are trained to extract 
features from mixed noisy signals and target clean speech respectively. Subsequently, the two types 
of extracted features are associated together by training a BP neural network to obtain a mapping 
from the features of mixed signals to the features of target speech. Finally, by performing DBN and 
the above mapping neural network, target speech can be estimated from the input mixed signals. 
Experiments are conducted on different kinds of mixed signals including female/male speech 
mixtures, human-speech/Gaussian-noise audio mixtures, and human-speech/music audio mixtures. 
The PESQ scores of the extracted speech are 3.32, 2.59, and 3.42 respectively, which illustrates that 
the model performs well on speech separation tasks, especially on the mixed signals where the 
inference signals have obvious spectral structures. 

Introduction 

Recorded speech signals are often contaminated by noise, multi-speakers’ interference, 
background music, and so on. Therefore, the first step in information processing of speech signal is 
usually speech separation from the contaminated inputs in order to acquire a good front-end model. 
Up to now, many approaches have been proposed for speech separation, including independent 
component analysis (ICA) [1], non-negative matrix factorization (NMF) [2], subspace decomposition 
algorithm [3], and tools in computational auditory scene analysis [4] etc. Those approaches can only 
obtain good performance on speech separation when the target speech and interference signals satisfy 
certain constraints. However, the constraints are usually difficult to be satisfied in naturally recorded 
signals, which severely limit the application of these approaches in practice.  

A recently proposed machine learning tool, Deep Neural Networks (DNNs), has been used to 
speech separation, which has demonstrated positive performance in [5][6][7]. DNN learns multiple 
levels of representation, where higher level representation leads to more abstract features. The 
high-level abstraction can hopefully make it easier to separate signal mixtures from each other by 
exploiting the various interpretable factors in the data [8]. However, a prominent problem in training 
such a deep model is that the cost function can easily get stuck in poor local optima due to the sever 
non-linearity of the problem. Besides, unlike the supervised learning problem in traditional DNN 
training, due to lacking of manually made labels, DNN for speech separation has to be trained in an 
unsupervised way or a semi-supervised fashion. Hinton et al. proposed a greedy layer-wise algorithm 
for DNN unsupervised learning, which is called Deep Belief Networks (DBNs) [9]. The algorithm 
can alleviate the local-optimum problem and is able to produce relatively accurate layer-wise 
representations.  

Given the above facts, in this paper, we take DBN as our main model for extracting speech features 
from speech signals. With its generative nature, the DBN can reconstruct the input data based on the 
values of the outputs [10][11]. Hence, if we map the features from mixed signals to features of target 
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speech, the reconstructed outputs from DBN will be the target speech. In this paper, we use a BP 
neural network for feature mapping.  

The remaining part of the paper is organized as follows: In section 2, we introduce DBN briefly. In 
section 3, we describe the speech separation approach based on DBN. In section 4, we present our 
experimental results. And finally, we conclude our work in section 5. 

Deep Belief Network 
DBNs are probabilistic generative models that are composed of multiple layers of Restricted 

Boltzmann Machines (RBMs) [12]. A graphical depiction of RBM and DBN is shown in Figure 1. 
DBNs are learned layer-by-layer by treating the outputs of the RBM of a low-layer as the inputs for 
the RBM of the consecutive high layer.  

An RBM is a special type of Markov random field that has one layer of (typically Bernoulli) 
stochastic hidden units and one layer of (typically Bernoulli or Gaussian) stochastic visible or 
observable units. RBMs can be represented as bipartite graphs, where all visible units are connected 
to all hidden units, and there are no visible-visible or hidden-hidden connections. 
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Fig.1 An illustration of RBM and DBN 

In an RBM, the joint distribution ( , ; )p v h θ  over the visible units v  and hidden units h , is defined 
in terms of an energy function ( , ; )E v h θ  of 

( ( , ; ))( , ; ) exp E v hp v h
Z

θθ −
=  

where θ  refers to the model parameters and ( ( , ; ))
v h

Z exp E v h θ= −∑∑  is a normalization factor 

or partition function. 
For a Bernoulli(visible)-Bernoulli(hidden) RBM, the energy function is defined as 
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where ijw  represents the symmetric interaction term between visible unit iv  and hidden unit jh ; 

ib  and ja  are the bias terms; and I  and J  are the numbers of visible and hidden units. The 
conditional probabilities can be efficiently calculated as 
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where ( ) 1 / (1 )xx eσ −= + .  
Similarly, for a Gaussian(visible)-Bernoulli(hidden) RBM, the energy is 
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The corresponding conditional probabilities become 
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where iv  takes real values and follows a Gaussian distribution with mean 
1

J

ij j i
j

w h b
=
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variance one. It is easy to see from the above definitions, that Gaussian-Bernoulli RBMs can be used 
to convert real-valued stochastic variables to binary stochastic variables, which can be further 
processed using the Bernoulli-Bernoulli RBMs. 

Taking the gradient of the log likelihood log ( ; )p v θ  we can derive the update rule for the RBM 
weights as 

( ) ( )ij data i j model i jw E v h E v h∆ = −
 where ( )data i jE v h  is the expectation observed in the training set and ( )model i jE v h  is the expectation 

under the distribution defined by the model. Unfortunately, ( )model i jE v h  is intractable to compute. So, 
the contrastive divergence (CD) approximation to the gradient is used where ( )model i jE v h  is replaced 
by running the Gibbs sampling initialized at the data for one full step. The steps in approximating 

( )model i jE v h are as follows: 
 
Initialize 0v  at training data 
Sample 0 0~ ( | )h p h v  
Sample 1 0~ ( | )v p v h  
Sample 1 1~ ( | )h p h v  
 
Then 1 1( , )v h  is a sample from the model, as a very rough estimate of ( )model i jE v h . Use of 1 1( , )v h  

to approximate ( )model i jE v h  gives rise to the algorithm of CD-1. 
Stacking a number of RBMs learned layer by layer in a bottom-up way will produce a DBN. The 

stacking procedure is as follows. After learning a Gaussian-Bernoulli RBM, we treat the activation 
probabilities of its hidden units as the data for training the Bernoulli-Bernoulli RBM one layer up. 
The activation probabilities of the second-layer Bernoulli-Bernoulli RBM are then used as the visible 
data input for the third-layer Bernoulli-Bernoulli RBM. And so on. Some theoretical justification of 
this efficient layer-by-layer greedy learning strategy is given in [9], where it is shown that the 
stacking procedure above improves a variational lower bound on the likelihood of the training data 
under the composition model. That is, the greedy procedure above achieves approximate maximum 
likelihood learning. And this learning procedure is unsupervised and requires no class label. 

After performing the layer-wise learning, we have obtained a good initialization for the parameters 
(i.e. hidden weights and biases of all the layers) of the DBN. Then the back-propagation (BP) 
algorithm can be used to fine-tune the network weights in the same way as for the standard 
feed-forward neural network. 

Speech Separation based on DBN 
There are totally six steps to construct a speech separation model based on DBN, as shown in 

Figure 2. 
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Fig.2 Procedure for speech separation based on DBN 

In step 1 and step 3, we pre-train two DBNs separately for target clean speech and mixed signal in 
the training dataset. The two DBNs have the same structure which is consists of two RBMs. The first 
layer is a Gaussian-Bernoulli RBM. As described in [11], DBN behaves in a fairly binary way for 
reasonably long windows (9 and 13), but not for short windows. Following this instruction, for both 
the target clean speech (in step 1) or the mixed signal (in step 3), we take 9-frame speech spectra 
patches with normalized log power as the input vectors (visible layers) of the RBMs. Every frame 
contains 129 frequency bins which are computed from 256 point FFT. So every 9-frame patch is a 
1161-by-1 vector. The number of hidden units of the output layer of RBM is set 3000. The connection 
weights and biases can be learned efficiently using the CD approximation to the log likelihood 
gradient. After learning the first layer RBM, we treat the activation probabilities of its hidden units as 
the inputs for training the second layer Bernoulli-Bernoulli RBM [9] which has 3000 binary 
input/visible variables and 312 binary output/hidden variables. Now, we get two DBNs with three 
layers: 1161-3000-312. And this has been tested as a low-distortion speech coding architecture in 
[11].  

In step 2 and step 4, we fine-tune the DBNs constructed in the last steps. Firstly, we “unroll” the 
two DBNs by using their weight matrices to create two five-layer deep networks separately whose 
lower layers use the matrices to encode the input and whose upper layers use the matrices in reverse 
order to decode the input. The two deep networks are then fine-tuned using back-propagation of 
error-derivatives to make their outputs as close as possible to their inputs. We call the two deep 
networks target-speech-autoencoder and mixed-signal-autoencoder separately. Details of the process, 
including the number of training passes(epochs) in pre-training and fine-tuning, the division of the 
training set into mini-batches, the learning rate, the weight decay, and the threshold used to force 
binary codes, etc., are important to obtain good reconstruction results.  
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In step 5, we train a three-layer BP neural network such that it learns to map features from mixed 
signal to features from target speech. As shown in the dashed box of Figure 2, the input of the BP 
neural network is the activations from the middle layer of the mixed-signal-autoencoder, and the 
supervision of the input is the activations from the middle layer of the target-speech-autoencoder. The 
number of hidden variables in the BP neural network has some impacts on the mapping performance, 
as will be tested in section 4. 

In step 6, we assemble the speech separation model. As shown in Figure 2, the lower layers of the 
model (in the shadowed box) are duplicated from the lower half part of the mixed-signal-autoencoder, 
and the upper layers of the model (in the shadowed box) are duplicated from the upper half part of the 
target-speech-autoencoder. The two parts are connected by the BP neural network trained in step 5. 

Finally, the speech separation model based on DBN is done. By feeding the 9-frame spectral 
patches of the contaminated signal into the model, we can estimate the 9-frame spectral patches of the 
of target clean speech. Then, we use the overlap-and-add technique to reconstruct the full-length 
speech spectrogram. At the end, the time-domain speech signal can be reconstructed using the 
real-time spectrum inversion algorithm proposed in [13]. 

Experiments and Results 
We have examined properties of the speech separation model discussed above, and conducted 

experiments on different types of mixed signals including female/male speech mixtures, 
human-speech/Gaussian-noise audio mixtures, and human-speech/music audio mixtures. 

Data utilized in our experiments was selected from TIMIT database, where the training part is 
consist of 1000 female utterances (with duration 49min24sec) and 1000 male utterances (with 
duration 51min58sec), and the testing part is consist of 132 female utterances (with duration 
7min10sec) and 132 male utterances (with duration 7min21sec). All waveforms were down-sampled 
to 8 KHz, and the corresponding frame length was set to 256 points (i.e.32ms) with a frame shift of 
128 pints (i.e. 16ms). 256-point FFT was used to compute the spectrum of each frame. Then 
129-dimensional normalized log-power spectrum was computed for each frame. Subsequently, we 
jointed 9 consecutive frames together as the input vector for the model. The number of epoch for each 
layer of RBM pre-training was 50. Learning rate was set at 0.1 for the first 10 epochs, and then 
decreased at a rate of 1/10 after each epoch. The batch size was set to 100.  

 
Fig.3 Regeneration performance of autoencoders 
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Evaluation of the autoencoders. We set the speech of the female speakers as the target, and 
trained a target-speech-autoencoder with the selected 1000 female utterances. Then we mixed the 
1000 female utterances respectively with 1000 male utterances, Gaussian-noise signals 
(SNR=3.52dB), and background music signals (in our experiment, we choose Beethoven’s “For 
Alice” as the background music). Three mixed-signal-autoencoders were trained separately on these 
three types of mixtures. The spectra of the female speech and the three mixtures were shown in the 
left rows of Figure 3. Through the target-speech-autoencoder and the three 
mixed-signal-autoencoders, we got the regenerated spectra which are shown in the right rows of 
Figure 3. The PESQ scores[14] of the regenerations are shown in the middle row of Figure 3. 

Evaluation of the hidden variables of BP neural network. As mentioned in step 5, section 3, the 
number of hidden variables in the BP neural network influences the mapping performance. As is 
shown in Table 1, we tested different numbers of hidden variables for three BP neural networks 
which were trained separately for mapping features from three different types of mixed signals (i.e. 
female-male mixed speech, female-noise mixed speech, and female-music mixed speech) to target 
speech. The maximum training epoch was set to 1000, the minimum mean square error was set to 

210− , and the minimum gradient was set to 510− . The training data was the activations of the middle 
layer of the mixed-signal-autoencoders which were fed with the mixed training speech, and the 
supervisions for them were the activations of the middle layer of the target-speech-autoencoder 
which were fed into the target training speech corresponding to the mixed training speech. The fitting 
performances of the BP neural networks were measured by the mean square errors(MSEs) of the 
training datasets and the test datasets separately. We can see from Table 1 that the best number of 
hidden variables in the BP neural networks is 500 which will be adopted as the optimal number of 
hidden variables in section 4.3. 

Table 1. MSE residuals of the BP neural networks 
Number of 

hidden variables 
MSEs of Training / Testing 

Female-male Female-noise Female-music 
100 11.5343 / 30.9848 18.9889 / 47.7841 8.5127 / 22.6533 
200 4.2681 / 14.3670 7.3864 / 26.7860 2.9932 / 12.0423 
300 0.5121 / 9.5428 0.7771 / 15.3162 0.3513 / 7.9322 
400 0.4788 / 5.6098 0.7379 / 12.9976 0.3588 / 4.6657 
500 0.4064 / 2.1854 0.6130 / 8.6779 0.3060 / 1.7615 
600 0.6351 / 5.8168 0.9790 / 10.7320 0.4856 / 3.9849 

Evaluation of separation models. Through the above tests, we obtain the optimal structure of the 
speech separation model, whose numbers of variables from lower layer to upper layer are 
1161-3000-312-500-312-3000-1161. We trained speech separation models with such a structure, and 
Figure 4 shows the separation performance. The PESQ scores of the extracted speech via target 
speech are 3.32(female-male), 2.59(female-noise), and 3.42(female-music). The inference in 
female-male mixed signal, that is the male speech, has a similar spectrum structure with the target 
speech. The inference in female-noise mixed single, that is the Gaussian noise, has no obvious 
patterns in spectrum structure. And the inference in female-music mixed single, which is the 
Beethoven’s piano music “To Alice”, has strong patterns in spectra. From this we can infer that the 
more regular the structures of the inference signal behaves, the better the separation model performs.  
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Fig.4 Separation performance of three speech separation models 

Summary 
In this paper, a novel method for speech separation was proposed. The proposed method extracted 
features from mixed signals and target speech by DBNs separately. The extracted features were 
associated by training a BP neural network to obtain a mapping from the features of mixed signals to 
the features of target speech. By training the model, it was able to extract the target speech by 
reconstructing the input mixed signal. According to our experiments, the model performed well on 
speech separation tasks, especially to the mixed signals where the inference signals have obvious 
spectral patterns. In future work, we will improve the model's performance on speech separation of 
mixed signals whose inference signals show no obvious spectral structures. 
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