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Abstract. This document studies the eco monitoring networks. Based on the prior work:  the local 
effectiveness is proved, this paper focus on the global effectiveness of eco monitoring network. 
Information theoretical measures, i.e., conditional non-uniformity factor is applied. Although our 
work eventually quantify the ineffectiveness of global view, it discuss the possible reasons. 
Large-scale data is provided by DShield used to access the effectiveness of a real eco monitoring 
network. 

Introduction 
The eco monitoring networks is a kind of community-based network. In the world there are 

several such networks for example DShield (Internet Storm Center)[1], PREDICT (Protected 
Repository for the Defense Infrastructure Against Cyber Threats) [2], and DIMES (Distributed 
Internet Monitoring infrastructure) [3]. 

All data used in this paper comes from DShield. Such information: “source IP address A, source 
port number A1, destination IP address B, destination port number B1, monitor C, time T” is 
included in a scan packet from the direct DShield data. 

Some prior work is studied on malicious/infected sources [4][5][6]. Through the saliency of a 
local view, the effectiveness of local inference is proved in[7]. The following will discuss the global 
effectiveness of eco monitoring networks, ie., the effectiveness of network-wide monitoring. 

Global Effectiveness 
Would the effectiveness of local views result in an effective eco monitoring network? In other 

words, would voluntary participations, i.e., good wills of the community, result in effective 
network-wide monitoring? In this section, we characterize the effectiveness of an eco monitoring 
network through conditional Renyi entropy, and measure the effectiveness of the real eco network 
using DShield data. 

Conditional Renyi Entropy 
We adopt Renyi information entropy [8] to measure the effectiveness of an eco monitoring 

network. In the prior work [9], Renyi entropy has been used to quantify a worse case scenario of 
random attacks that exploit the non-uniformity of malicious sources. In this work, Renyi entropy is 
extended to monitors. In particular, Renyi Entropy of a local view given monitor j is 
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for v = 0,1, 2, and 1 ≤ j ≤ k . v is the order of the Renyi entropy, and v = 0, 2 are of interest 

here. ( ) nPH j 20 log=  is the Renyi entropy of order zero. When ln 2= , ( ) lPH j =0  is the prefix length of /l 
subnets. Renyi entropy of order 2 (Renyi entropy in short), ( ) )(loglog 222 nnPH jj β−= , characterizes the 
randomness remaining in a malicious source distribution given a local view. Hence, the Renyi 
entropy is related to the conditional non-uniformity factor in a non-linear fashion [9]. 

International Industrial Informatics and Computer Engineering Conference (IIICEC 2015) 

© 2015. The authors - Published by Atlantis Press 1511



 

The larger βj (n) is, the smaller the Renyi entropy, the more non-uniform the malicious 
distribution in view of a monitor, and less randomness remaining in a local view. The (expected) 
conditional Renyi entropy is defined by considering all monitors as follows [8]. 

Definition: Conditional Renyi entropy [8]. Conditional Renyi entropy is 
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where the expectation is over monitors. For v =2 , we obtain the following relation. 
Lemma 1: ( )[ ] ( )( )nEnPHE jYj β222 loglog −= . 

The proof of the lemma follows the definition of conditional non-uniformity factor in Equation 
3[7] and that of conditional Renyi entropy in Equation 2 as well as simple algebraic manipulations; 
is thus omitted. 

This expression represents the conditional Renyi entropy into two computing terms. The first is 
the conditional Renyi entropy of an uniform distribution over the network address space. A uniform 
distribution assumes that each subnet is equally likely to be a malicious source. For l/  subnets, 
there are ln 2= l/  subnets in the network address space; and l  , i.e., n2log  , is the dimension of 
the network space for malicious source locations. When l increase, the dimension of the network 
space increases, the amount of uncertainty increases as for where malicious sources may be. The 
growth rate l is the fastest as it corresponds to the most uncertainty in a uniform malicious source 
distribution. Hence, the first term n2log  is referred to as the dimension uncertainty of the network 
address space. 

The second term ( )( )nE jY β2log  can be regarded as the amount of information in bits that is 
captured by a typical local view in an eco monitoring network. This term takes two factors into 
consideration. One is the saliency βj (n) of the local view of an individual monitor. The other is 
the expectation over all monitors in an eco monitoring network. The expectation takes into 
consideration that monitors can receive malicious scan packets from different sources, and the 
number of scan packets received can vary from monitors to monitors. 

Consider an extreme case of a most non-uniform distribution where each monitor sees one 
unique location of malicious sources, i.e., P(X=i | Y=j)=1 if i =i0 ,i0∈[1, n] ; and P(X=i | Y=j)=0 , 
otherwise. Then ( )njβ2log  takes the maximum value log2n . This implies that there is no uncertainty 
left in the locations of malicious sources in view of a monitor since the monitor sees a unique peak 
as a source distribution. Hence the expected saliency compensates completely the dimensional 
uncertainty, and the conditional Renyi entropy is zero. Another extreme case is when all monitors 
see a uniform source distribution, i.e., ji

n
jYiXP ,,1)( ∀=== . Then ( ) 0log2 =njβ , and the expected Renyi 

entropy is the largest, i.e., log2 n . This implies that the saliency of the local views can not 
compensate any dimension uncertainty. In general, since ( )( ) ll

jYE 2log2log 22 ≤β  and ( )l
j 2β  is a 

non-decreasing function of l as shown in Property 2, we can obtain a lemma below. 
Lemma 2: ( )[ ] lPHE jY ≤≤ 20  , where 1≤l . 

Hence, the difference ( )[ ] ( )( )nEnPHE jYj β222 loglog −=  characterizes a trade-off between the dimension 
uncertainty and the saliency of local views: As the dimension l increase, the uncertainly of the 
network space increases. Meanwhile, the information bits ( )( )nE jY β2log captured by local views increase 
also, since monitors can see a more detailed malicious source distribution. Whether or not an 
increase in the saliency of local views can compensate more uncertainty in a larger network space 
determines the global effectiveness of an eco monitoring network. We use the growth rate of 

( )l
jYE 2log2 β , i.e., the rate of ( )[ ] ( )[ ]l

jYj ElPHE 2log22 β−=  , with respect to l to quantify the effectiveness of an 
eco monitoring network. 

Definition: An eco monitoring network is considered as effective if ( )[ ]
)(

2log2 lo
l

E l
jY =

β  This 
definition means that an eco monitoring network is effective if the information bits ( )[ ]l

jYE 2log2 β  of 
local views can nearly compensate the dimension uncertainty. 
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B.Effectiveness of Eco Monitoring Network 
Do the information bits captured by local views indeed compensate the dimension uncertainty in 

the real eco monitoring network? We evaluate empirical conditional Renyi entropy using DShield 
data. The empirical conditional Renyi entropy is for /l subnets and 1≤l≤k , 

 
.                                                          (3) 

 
Figure 1 shows the estimated conditional Renyi entropy. The conditional Renyi entropy increases 
piece-wise linearly with respect to l for /l subnets. This implies that more and more uncertainties 
arise when a monitor looks “deeper into the network”, i.e., at longer prefixes of malicious source 
locations. Furthermore, the uncertainty grows at the linear rates. Hence the eco monitoring network 
is ineffective by definition. 

  

Fig. 1. Conditional Renyi Entropy 
So far we have obtained the finding: the ineffectiveness of the eco monitoring network although 

the effectiveness of the local views is improved in [7]. Are these two findings contradictory? 
Observing Figure 1 carefully, we see that the slope of empirical conditional Renyi entropy is less 
than 1. This implies that the linear growth of information bits  with respect to l is slower 
than l; thus, the dimension uncertainty dominates the conditional Renyi entropy. Therefore, as the 
network address space becomes larger, and the saliency of local views is insufficient for 
compensating the dimension uncertainty. This results in a twofold characteristic of the eco 
monitoring network: local views are salient individually but insufficient to result in an effective eco 
monitoring network system-wide. 

Discussion 
Why is the eco monitoring ineffective for the inference task? As this results in a worthy topic 

for further research, we discuss here a few possibilities. 
The first is a relative small size of the eco monitoring network compared with the network address 
space being monitored. The number of monitors we found from DShield in the three months is less 
than three thousands. However, the monitored network address space for IPv4 is in the order of 
billions. The relative small size results from the number of voluntary participants. 
Community-based eco-systems are often moderate in size, and in fact, DShield is one of the largest. 
Hence, more study is needed to understand whether the relative small size poses limitations to eco 
monitoring networks. 

The second issue is the topology of the eco monitoring network. The privacy of participants 
does not allow reconstruction of the topology of the eco monitoring network from DShield data. 
However, monitors from voluntary organizations are often clustered at a certain locations and 
lacking at the others (see DIMES [3] for a similar example). Hence, it would be helpful to 
understand whether or not such clustered participants would be able to monitor an entire network 
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space. 

Summary 
This work has studied the issue in community-based eco monitoring networks: The 

effectiveness of an eco monitoring network system-wide. These issues have been studied in a 
setting of inference of malicious source locations. The conditional Renyi information entropy has 
been applied to quantify the effectiveness. Large-scale malicious scan measurements from DShield 
have been used to understand the effectiveness of a real eco monitoring network.  

Our study has resulted in the finding: Although the local inference by individually monitors is 
effective[7], the eco monitoring network is ineffective system-wide. The observation is that the 
increase of information gain in local views is not fast enough to compensate the dimension 
uncertainty of malicious sources as the network address (prefix) space becomes larger. 

The contribution here is an understanding based on a quantification using information 
theoretical measures. One direction is to understand whether a moderate number of participants and 
their clustered locations result in the ineffectiveness of eco monitoring networks. Another direction 
is to study other types of inference results shared by organizations in eco monitoring networks.  
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