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Abstract. A new method based on Volterra filter is introduced to extract weak signal in strong 
chaotic noise. A nonlinear prediction model is established by combining phase space reconstruction 
and adaptive Volterra filter. Self-noise of ship is used for training the prediction model.  The model 
has a good prediction performance of noise without signal, but when signal is mixed with noise, the 
modal mismatches and prediction error varies dramatically. The cross-correlation of extracted signal 
and real signal is calculated, and the similarity of waveforms is compared. It had been shown that the 
algorithm is powerful for regular signal extraction. 

Introduction 
Conventional signal extraction techniques are based on statistical theory, which is a significant 

part in signal processing. But in condition of low signal-to-noise ratio (SNR), performance of 
conventional method degrades. Recently, chaotic theory has been developing rapidly. Chaotic 
phenomena had been found in ship-radiated noise [1, 2], marine ambient noise [3] and ocean 
reverberation [4]. Corresponding research results are widely applied to underwater acoustic signal 
processing [5, 6]. Nonlinear dynamical system can be modeled by some methods such as artificial 
neural network (ANN) [7], Volterra filter [8], Support Vector Machine (SVM) [9] and so on. Because 
output of Volterra filter is a linear function of the kernel and performance of Volterra filter can be 
analyzed by linear techniques, Volterra filter is used extensively as a prediction model. In this paper, 
a method of weak signal extraction from chaotic noise is introduced. The prediction model of chaotic 
time series is established by applying Volterra filter. The model has a good prediction performance of 
chaotic noise. When regular signal is mixed with chaotic noise, the model mismatches and prediction 
error varies dramatically. In underwater acoustic detection, the target is a certain ship-radiated noise, 
and interferences include ship-radiated noise, ambient noise, and so on. We apply the model above to 
detect target signal and ship noise, verifying the validity of the algorithm. 

Theory and Method 

Modeling of Chaotic Time Series 
Chaos is deterministic, namely, chaotic time series obey certain laws. In fact, chaotic time series 

can be predicted in a short term, and may occupy preferable prediction performance [10].This provides 
foundation for modeling chaotic time series. According to coordinate delay method [9], time series 
( ){ }Nnnx ,,2,1, 2=  can be reconstructed, and the point of phase space is: 

( ) ( ) ( ) ( )[ ]TmnxnxnxnX ττ )1(,,, −−−=                                                     (1) 
where m is embedding dimension, and τ is delay time. It is proved by Takens theorem that if 
embedding dimension 12 +≥ dm ( d  is the fractal dimension of the attractor), the reconstructed 
dynamic system is equivalent to the original one in topology, that is, the two strange attractors are 
homeomorphic in differentiation. Hence, there is a smooth mapping mm RRf →: , which tracks points 
in phase space 
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( ) ( ))(1 nXfnX =+                                                                    (2) 
where ( )•f is the prediction model. 

Volterra Filter 
The output ( )ny of Volterra filter is expressed in the form of Volterra series expansion: 
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where ( )kk iih ,,1  is the coefficient of Volterra filter, namely Volterra kernel, and p represents the 
order of the filter. In practice, p is usually 2, and ( )ny can be written as: 
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The equation above indicates Volterra filter is a nonlinear adaptive FIR filter, whose coefficient 
vector and input vector can be also expressed as  

( ) ( ) ( ) ( ) ( )[ ]TmmhhhmhhhhnH 1,1,,1,0,0,0,1,),1(,0)( 222111,0 −−−=                            (6) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )[ ]TmnxnxnxnxmnxnxnxnU ττττ 1,,,,1,,,,1 22 −−−−−−=                         (7) 
So Eq.6 can be written as follow 

 ( ) ( ) )(nUnHny T=                                                            (8) 
where the input vector ( )nU is obtained by phase space reconstruction, and the coefficient 
vector ( )nH is gained by training Volterra series kernel. The output of Volterra filter is actually a 
fitting result, realizing time series prediction. 

Extraction of Weak Signal 
Suppose the signal ( )ns is mixed with chaotic noise ( )nc , then the observation is 
( ) ( ) ( )ncnsnx += .The forecasted result is ( )nx̂ and the prediction error is ( ) ( ) ( )nxnxne ˆ−= . ( )ne can be also 

expressed as : 
( ) ( ) ( ) ( ) ( ) ( )nxncnsnxnxne ˆˆ −+=−=                                                  (9) 

If the accuracy of nonlinear prediction is high enough, ( )ne tends to 0. Then ( ) ( )nxnc ˆ− and ( )ns  tend 
to 0 recpectively. ( )ne and ( )ns have very nearly equal values.It is easily understood that the regular 
signal disturbs tracks of strange attractors.The weaker the regular signal is, the less the disturbance 
is ,and the higher the prediction precision is. Therefore, regular signal can be estimated when SNR is 
low by utilizing prediction error. 

Simulation and Results 
To test validity of the algorithm above, simulation examples are demonstrated. Two kinds of pulse 

signals are extracted from a typical chaotic series. The x component of output from Lorenz model is 
applied as chaotic ground noise. Eliminating transiting points, a testing data of 2000 points is selected. 
The testing data are normalized as follow: 
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where { })(ny is the original series, and ( ){ }nx is the normalized time series. The first 1000 points are 
training samples, while the last 1000=pN are testing samples. Mean square error of one-step 
prediction is defined as: 
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Add a pulse signal ( )nS between the 1stpoint to the 300thpoint to the testing samples. To do 
quantitative analysis, Signal Chaos Ratio (SCR) is defined: 
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Extraction of Sinusoidal Signal 
The signal added here is a series of sinusoidal signals with normalized frequency 0.25 and 

amplitudes varying from -100dB to 0dB.Weak sinusoidal signals are extracted by applying Volterra 
filter. For the x component of Lorenz model, optimized parameters of phase space reconstruction of 
are set as follows: embedding dimension m=3, and delay time 11=τ . 
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Fig.1 The prediction error of chaotic noise mixed with sinusoidal signal 
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Fig.2 The correlation coefficient of prediction error and sinusoidal signal 

The extraction results of sinusoidal signals from Lorenz series are shown in Fig.1 and Fig.2.With 
increasing of SCR, the mean square error of one-step prediction remains stable until SCR reaches 
-30dB. When dBSCR 30−≥ , the prediction error changes dramatically. It is because that the regular 
signals disturb tracks of strange attractors. The higher SCR is, the more significant the disturbance is. 
Solving cross-correlation of one step prediction error and the sinusoidal signal, similarity of 
waveforms are compared. When SCR is between -30dB to 0dB, waveform of prediction error is more 
close to that of sinusoidal signal. Thus sinusoidal signal can be extracted in this condition. 

Extraction of LFM Signal 
We also consider LFM signal mixed with the x component of Lorenz model. The frequency band 

B=0.4fs, and the amplitudes vary from -100dB to 0dB.As is shown in Fig.3 and Fig.4, weak LFM 
signals are extracted from chaotic background noise by using Volterra prediction model. 
Significantly, the cross correlation of prediction error and LFM signal appear lower. LFM series is 
broadband in frequency spectrum When the signals are mixed, the original strange attractor is 
disturbed from many frequency points, resulting in a larger prediction error. 
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Fig.3 The prediction error of chaotic noise mixed with LFM signal 
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Fig.4 The correlation coefficient of prediction error and LFM signal 

Experimental results and analysis 

In practice, signals are always not regular. For example, in underwater acoustic target detection, 
the target is a certain ship-radiated noise, and interferences include ship-radiated noise, ambient noise, 
and so on. To verify the validity and robustness of the extraction method, one target signal is 
extracted from another ship-radiated by applying Volterra prediction model. All the ship-radiated 
noises were collected by standard acoustic sensors with an A/D conversion scheme of 10 kHz 
sampling rate and a 16-bit resolution. Collected data was filtered by a low-pass filter whose upper 
limit is 1.6 kHz 

Modeling of Background noise 
One kind of merchant ship is marked Target1. In this thesis, the average mutual information (AMI) 

method is applied to estimate delay time. Embedding dimension is calculated by Cao method [10]. 
Optimized parameters of phase space reconstruction of are set as follows: embedding dimension m=6, 
and delay time sT14=τ .Utilizing Volterra model, one-step prediction results are obtained. As is 
indicated in Fig.5, prediction values and true values match well with each other. The mean square 
error 31014.1 −×=Perr can be calculated from one step prediction error. 
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Fig.5 The prediction results of Target 1 
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Extraction Results and Analysis 
Target1 signal serves as background noise. Another kind of target signal with normalized 

amplitudes is added to the background noise between the 1001thpoint to 1300thpoint.SCR varies from 
-30dB to 30dB.Two kinds of other underwater acoustic target signals are marked Target 2 and Target 
3,repectively. According to the nonlinear model in Section 3.1, one-step prediction results of mixed 
signals are gained. As is shown in Fig.6, the prediction error changes dramatically when dBSCR 0≥ , 
indicating the appearance of the signal. Cross-correlation of one step prediction error and the Target 2 
signal is illustrated in Fig.7. When SCR is larger than 10dB, waveform of prediction error is more 
close to that of Target 2 signal. To test the robustness of method, we also consider Target 3 signal 
mixed with Target 1 signal. The prediction results are shown in Fig.8 and Fig.9. 
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Fig.6 The prediction error of Target 1mixed with Target 2 
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Fig.7 The correlation coefficient of prediction error and Target 2 
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Fig.8 The prediction error of Target 1mixed with Target 3 

Summary 
In this paper, a method of extracting underwater acoustic weak signal base on Volterra filter is 

proposed. The method has a good prediction performance of chaotic noise. When regular signal is 
mixed with chaotic noise, the prediction error varies dramatically. As the model responds slowly to 
status changes of nonlinear system, signals can be extracted from strong chaotic noise. For verifying 
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the validity of above method in detection of regular signals and ship noise, experimental data are used 
for computation. The method proves powerful for regular signal extraction, but for ship noise, only if 
SCR is higher than 10dB, the predicted waveform of ship noise can be acceptable. 
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Fig.9 The correlation coefficient of prediction error and Target 3 
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