

Design and Implementation of Self-Repairing Component-Based
Software for Stream-oriented Applications

YingHua Guo1, a, Hang Zhou2, b
1 Sci. & Tech. on Underwater Acoustic Antagonizing Laboratory, Zhanjiang, China

2 Naval Univ. of Engineering Wuhan, China
ayingh_guo@sina.com.cn, bzhouhang@163.com

Keywords: component; self-repairing; stream-oriented; framework.

Abstract. Component-based software development has emerged as an important method in
application development to solve the software-crisis. It is now becoming apparent that the technology
cannot respond to such diverse requirements or technical challenges because of its insufficient
flexible. In this paper the problem of building a scalable component-based system is addressed by
means of dynamic reconfiguration. Specifically, considering the system response time and the
throughout as the performance metrics, the performance constraint of system components can be
satisfied by using more physical resources and a self-repairing component-based software for
stream-oriented applications has been designed and implemented. At the end, an example is carried
out to validate the design. Experimental results show that an application’s properties can be scarified
by adopting this design approach and dynamic properties can be achieved by dynamically adjusting
components on demand.

Introduction
Component-based software development (CBSD) has emerged as an important technology in modern
software development largely because it is a reused approach to defining, implementing and
composing loosely coupled independent components into systems. Consequently, it has been
considered as one of the most feasible methods to enhance the software production efficiency and
quality, and then to solve the software-crisis. With in-depth research, an amount of component
models including CORBA (Common Object Request Broker Architecture), COM (Component
Object Model), .NET, and the Java-based series of technologies, including RMI (Remote Method
Invocation) and EJBs have been increasingly extensive. However, Traditional component has the
philosophy of “black-box” reuse, which hides the heterogeneity of underlying operating systems,
networks and programming languages [1]. Though this reuse frees the developers from dealing with
the heterogeneity, it is now becoming apparent that traditional component-based software
development technologies cannot respond to such diverse requirements or technical challenges in a
wider range of areas, such as real-time systems maintained by developers of most existing
component.

Real-time systems that process large volumes of streamed data can be naturally expressed as
Stream-oriented applications with timing constraint. The latency in such applications is a specific
performance metric because it impacts directly on reliability and performance of the system. A
stream-oriented application can many times be considered as performance aware system which
means a mismatching between hardware and software may be appearance completely from the
variant runtime status of software even the platform configuration is under a constant condition. In
fact, the performance is degraded for the maladjustment of the software granularity and the hardware
resources. One commonly used solution is based on performance aware reconfiguration, whose goal
is the reduction of the system response time through a performance-aware degradation of the
application, driven by the solution of performance models at runtime [1]. However, there are
situations such as radar and sonar equipment where this approach is not practical. Not every system
can scale by simply degrading certain performance. Another approach is based on dynamic
scalability using more physical resources which meets the problem of reacting quickly to spikes in the

International Industrial Informatics and Computer Engineering Conference (IIICEC 2015)

© 2015. The authors - Published by Atlantis Press 1641

workload, as allocating new resources and starting new application instances is not instantaneous.
Current efforts to solve this problem are focused on how the component is able to make observations,
take a decision and execute a reaction previously defined. What is exactly observed, how decision is
made and which actions must be performed to execute the reaction are closely related to the
component and the goal given the dynamic adaptation. There are generally two approaches to
implementing the adaptation: parameter adaptation and compositional adaptation [2]. Parameter
adaptation modifier program variables that determine behavior, compositional adaptation exchanges
algorithmic or structural system components with others that improve a program’s fit to its current
environment.

This paper introduces a self-repairing component framework for stream-oriented signal processing
applications which has the capability to obverse its status by providing a presentation of its internals,
to support the decision analysis and to allow the processing and thread to be dynamically manipulated
and reconfigured for satisfying with the response time constraint.

The rest of this paper is organized as follows: Section 2 has a brief discuss on the concepts in
self-repairing component-based software system; Section 3 introduces the framework of the
self-repairing component; then a description about the results of experimental evaluation of the model
is given in section 4; Section 5 presents the conclusions.

Problem Discussion
In the design and implementation of self-repairing component-based software, the aspects of the
problem are comprised of three parts: the acquirement of system performance, the decision of
self-repairing strategy instauration strategy and the realization of the project [3, 4].The first part is
how to obtain the computional latency and the communitation latency during the running timem, then
evalutor the throughout. The second part is how to optimize the performance, the problem is
concerned with the study of enableing the platforms dynamically reconfigurable to respond to
changes their environments and improve the flexibility and adaptability of component. The last part is
how to dynamically reconfigure the sources such as the redistribution of process and threading.

Design and Implement of the Self-Repairing Component-Based Software
Real-time constraint is a necessarily non-functional indicator to be considered that mainly depends on
the longest delay of pipeline stage.

We assume:
Throughout: the throughput of pipeline, it is generally less than the given threshold;
Dataset: the data set of pipeline, the value is commonly fixed for a specific system;
Latency: the response time of pipeline, the time interval between the input data and the next one.
Then, the calculation formula for the pipeline throughput

Latency
DatasetThroughout =

 （1）
The formulation show that the Throughout is dependent on the Latency.

Ppleline Stagy 1 Ppleline Stagy 2 Ppleline Stagy n......

1c
1n

2c
2n

nc
nn

1D 2D nD

Computional PipelineDataSources
Dataset

Latency

Fig.1 Throughout model of pipeline

1642

Figure 1 shows the throughout model of pipeline [5].The symbol in the figure is defined as:
Di: the data set of the pipeline stage i, that may increases or decreases dictated by the certain signal

processing algorithm
Ci: the computational latency of the pipeline stage i, which is determined by the algorithmic

complexity
ni: the communication latency of the pipeline stage i, that is concerned with the network topology,

bandwidth and so on.
According to the formula (1), the throughput of the pipeline stage i is as follows:

ii

i
i nc

D
Throughout

+
=

 （2）
Note that the processing time of a dataset in each pipeline stage should be approximately equal to

ensure the pipeline is in balance, otherwise a bottleneck is created. This implies that when

() () ()
Throughout

DatasetLatencyncncnc nn =≈+≈≈+≈+ 11
 （3）

the pipeline is stable. It seemed that the emphasis on performance evaluation is computational and
communication latency of the pipeline stage i. According to the evaluation result, a judgment whether
a performance fault has been occurred or not can be made.

The Measure of the runtime states and internal behaviors. As mentioned, the important
criterion that must be met for a pipeline to be implemented is the computational latency of each
computational component. The Measure of the runtime states and internal behaviors process is
consists of the following steps:

The acquirement of component latency : the technique is to obtain the runtime of the circulation
function, which consisting of three portions: data receiving, data processing and data sending. The
timer function is setting by two functions. The setTimeA() function recording when the process
commences and setTimeB() function while it completes. The difference is considered as the
component latency, and is transmitted to the Threading Controller and Manager Controller in the
performance parameter distributed stage.

On-line calculation of the pipeline’s throughput measurement: As well as the computational
latency, throughput is a general criterion to take into account. When processes are distributed in the
same node, the data transferred in memory while the inter-process communication is relied on the
internet when the MPI process is located in different cluster nodes. Therefore, the throughput of the
MPI process has some relationship with the data flow in different network hardware. The
measurement of MPI process throughput is then transformed into the measurement of network flow
problem.

The acquirement of network information in the single node is depended on the calculating formula
of the network throughputs:

interval time
unit timeper datanetwork ofamount theThroughputNetwork = （4）

In the Linux operating system, the network information can be obtained though reading system
information files. The most important information are total bytes either received or sent by the web
service.

The source code following is to obtain the necessary information:
if((fp = fopen("/proc/net/dev", "r")) == NULL) //open status files
scanf(context, "%s %s %s %s %s %s %s %s %s ", RecvBytes, info1, info2, info3, info4, info5,

info6, info7, SendBytes);
long recv = atol(RecvBytes); // Convert the bytes received
long send = atol(SendBytes); // Convert the bytes sended
long bytes = recv + send;
int load = (bytes - bytes_last) / 1000; // Get network traffic through calculation, unit (KB/s)

1643

bytes_last = bytes;
The global information of clusters’ network throughput is contributed by each node in the cluster

system with the MPI_Gather () function. The method adopted is the main gthering process running in
the master node receives message of external nodes while the external nodes run gthering process for
collecting the network status and transmits those message to the main process.

Master node
Slave node Slave node Slave node

MPI_Gather()

Packet

Fig 2 Data collection
Composition of performance Fault-Tolerant manager. The performance fault-tolerant

manager contains all mechanisms that can be defined independently of the content of the service
functional components. The Evaluator component decides whether the system should be dynamically
reconfigurable or not with the observation and manipulation of the runtime states and behaviors
internal of platform. The Frequency Controller component prevents the long-lasting instability status
of the system by limiting the over-frequency reconfigurable. The Planner establishes a suitable plan
given to the executor.

Evaluater Frequence
Controller Planner

Perfomance Fault-Tolerant Manager

Fig.3 Component graph of performance Fault-Tolerant manager
The relocation strategy implementation. According to the above analysis, the Performance

Fault tolerant is a two-level process. The relocation of threads is self-controlled under the preinstalled
parameter in each computational component. The relocation of process is centralized controlled by
the performance Fault-Tolerant manager. The concrete realization is introduced in the following
discussion.

The relocation of the threads：When the computation component is initialized, the granularity
has been described using <granularity> in the XML files.

<thread number="1">
 <inc>30</inc>
 <dec>15</dec>
</thread>
The <inc> represents the upper bound of the latency for increasing the threading and the <dec>

denotes the low bound for decreasing the threading. The trigger level can be modified by the
self-repairing manager. Such certain code display as follow：

ThdsRelocate(cid)
{

//relocate the threads，cid : a unique number for the link
 xmlr.appList.component[cid].granularity_thread_inc = 20;

 xmlr.appList.component[cid].granularity_thread_dec = 10;
}
After determining the limit value, the chkNumThds () calculates the delay time parameters for

judging whether thread is relocated or not.

1644

The relocation of the process：The decision algorithm of process relocation is in the management
interface and the algorithm of thread relocation is performance fault-tolerant manager .

when the computation component is initialized, the granularity has been described using <
process > in the XML files.

<process number="1>
 <node>1</node>
</process>
This indicates that the component is a single process configured in the No.1 node of the cluster.

And the process granularity information is modified by the performance Fault-Tolerant manager
ProcRelocate() { //relocation of process，cid: component serial number
 xmlr.app.co[cid].granularity_process_number = 2;
 xmlr.app.co[cid].granularity_process_node.push_back(hid);
 Info Convert();
}
After the code execution, a replication of orginal component is required and placed in the hid node.

Example and Analysis
A test is performed on a Linux Cluster with 5 Blades. Every blade, also known as a node with IBM
HS21, contains two Intel Xeon E5450 processor CPUs that each has 8GB of memory and 4 cores. The
software platform includes Red Hat Linux Enterprise 5 and Intel C Compiler 11.083. This test is just
a simple signal processing example to verify this scheme’s feasibility by measuring the run-time
states of real-time components in a dynamic setting. As Figure 4 shown, it contains four periodic
real-time components—COM1, Com2, COM3 and Com4 and the component graph is naturally
expressed in terms of a pipe-and filter paradigm.

COM2 COM3 COM4

COM1

Fig 4 the component graph
COM1 sends volumes of data per 4ms. COM2 receives that data and transmit it when it completes

the processing in 2ms. COM3 implies that tuple in a certain time which is depended on a parameter
noted as α, Figure 5 illustrates the plot of execution time as a function of parameter α. COM4 just
displays the results.

0

5

10

15

20

25

30

35

40

45

10 20 30 40 60 10
0

18
2

19
0

19
5

20
0

23
0

26
0

29
0

32
0

35
0

38
8

Ti
mi

ng

Fig 5 Relation between parameter α and execution time
Because the time increases as the accretion of α, if we assume the timing constraint of the system is

23ms, it suggests that when α is greater than 210, COM3 would not achieve the non-function
capability for its excess execution time. A reconfiguration should then be taken place: a replication of
COM3 node as COM3_1 is required and placed in a free node.

1645

COM2 COM3 COM4

COM1 COM3_1

Fig 6 the component graph after reconfiguration
Figure 7 displays the utilization factor of CPU operation is approximately linear decreased along

with the increment of thread number, when the thread binding is used. When α is less than 210, the
system matched well with the timing constraint. The utilization factor of CPU in original node is
smoothly increased from 8% to 10% while the expand node remained 0%. When α is more
than 190，the reconfiguration occurred in the running time. The replication of COM3 is placed in the
expand node which cause the utilization factor of CPU in expand node is changed from 0% to 8%,
while the original node decreased from 10% to 8%.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

130 180 190 210 240 270 280

T
h
e

u
t
i
l
i
z
a
t
i
o
n

o
f

C
P
U

The original node The expand node

α

Fig 7 Utilization factor of CPU in original and expand node

Summary
This paper designs a kind of component framework of signal processing applications, suitable for the
self-repairing component-based development. The reusable model matches the characteristic of
stream-oriented application. It is a particular configuration of components that can be selected at
reconfigured during runtime for performance aware. The experiments results indicate that our design
approach is feasible; it is convinced that the approach provides he agility that applications require.

References

[1] Rajkumar Buyya, “High Perfomance Cluster Computing: Architectures and Systems” vol.
1.Pearson Education, 1999, pp. 661-663

[2] R. Sudarsan, C.J. Ribbens, Efficient multidimensional data redistribution for resizable parallel
computations, in: Proceedings of the International Symposium of Parallel and Distributed
Processing and Applications (ISPA ’07), Niagara falls, ON, Canada, 2007, pp. 182–194.

[3] G. Henkelman, G.Johannesson and H. Jónsson, in: Theoretical Methods in Condencsed Phase
Chemistry, edited by S.D. Schwartz, volume 5 of Progress in Theoretical Chemistry and Physics,
chapter, 10, Kluwer Academic Publishers (2000).

[4] U. Aßmann, Invasive Software Composition, (Springer, 2003).

[5] M. Korch and Th. Rauber, Optimizing locality and scalability of embedded Runge-Kutta solvers
using block-based pipelining, J. Par. and Distr. Computing, 66, 444–468, (2006).

1646

	Design and Implementation of Self-Repairing Component-Based Software for Stream-oriented Applications
	Introduction
	Problem Discussion
	Design and Implement of the Self-Repairing Component-Based Software
	Fig.1 Throughout model of pipeline
	Example and Analysis
	Summary
	References

