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Abstract. The issues of bubble-size spectra estimation were researched using the bubble resonance 
theory and an iterative approximation, in order to further understanding the performance of the two 
approaches for determining bubble-size spectra, the estimation accuracy of four bubble-size spectra 
models have been analyzed. It comes out that the bubbles with medium range of bubble-size spectra 
can be precisely determined using the two approaches, however, the bubbles distributed at the 
two-end of bubble-size spectra have poor performance. The iterative approach ,by which the mean of 
bubble-size spectra estimation error less than 3%,is significantly better for estimating bubble-size 
spectra than the bubble resonance, by which the mean of bubble-size spectra estimation error as much 
as 20%, meanwhile the  iterative approach with  smaller variation of  the estimation error. Therefore 
the iterative approach has a better accuracy for determining bubble-size spectra than the resonance.   

Introduction 
It is well known that the presence of bubbles in a liquid has a tremendous impact on its acoustical 
property. As documented [1,2,3], the bubbles can reach as much as 10 meters beneath sea surface and 
the void fraction of bubbles in water can reach as high as 10-3. The presence of bubbles will 
significantly change the properties of bubbly water, and profoundly impact the sound propagation in 
bubbly water because that its scattering section is much larger than its geometric section. Therefore, 
the acoustic properties of bubbles in bubbly water have attracted a lot of attention of researchers. 

As early in 1933, the natural frequency of bubble was derived by M.Minnaert, which is expressed 
by M liq liq 0= 3 P / /Rω γ ρ , later,  more complicated factors including the frequency of driving pulse, 
the viscosity of water, the depth and size of bubbles, were taken into consideration in the literatures 
by Charles Devin[4], Marshall V. Hall[5] and Michael A. Ainsile[6], details of which will be depicted 
in subsequent sections.  

Although the vibrations of resonant bubble have been rigorously deducted, the bubble population 
distributed in bubbly water can’t be precisely determined, because the integration of all size bubbles 
is unpractical. Fortunately, the scattering section of bubble is much larger than its geometric section, 
based on this notion, the bubble population distributed in bubbly water approximated with barely 
taken the resonant bubbles into account was provided by Medwin[7], 2 3( ) 8.686 ( ) /R R Rf a n aa π δ= , 
which brings un-accuracy in some extent on the bubble population. Therefore, the improvement of 
the bubble population estimation with an iterative approach was presented by J. W. Caruthers and P. 
A. Elmore[8], which is also based on the bubble resonance.  

Another impact of bubbles on sound wave propagation in bubbly water observed[1,9], is the 
phase speed of sound wave, which is a function of bubble population, and could be used for 
determining the bubble population using an inverse solution. Above all, it is assumed that the 
positions of bubbles in bubbly water are independent from each other, however, bubbles within 
naturally occurring clouds may be influenced by the dynamics of the fluids, in which they are 
entrained so that they become preferentially concentrated, or clustered, so a correlation function 
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describing the relationship between the positions of the bubbles has been used for examining the 
errors associated with coherent structure in the fluctuating bubble density by Thomas C. Weber[10]. 

As an inverse problem, the bubble-size spectra have been modeled in a lot of literatures. In 1977, 
Medwin formed the bubble-size spectra as a power-law with bubble radii, the index between -6 to 
-2[7], and later, more impact factors including the wind speed, the depth of bubbles, the bubble 
population and the variant with the depth were taken into the bubble-size spectra model, 

0( ) N G(a,z)U(w)Y(z,w)N a = ,by Marshall V. Hall[5] and Novarini[11]. In order to investigate the 
influence of ship wakes on sound wave propagation, a ship wake model was constructed by 
B.R.Rapids[12] using the data measured by Mark V. Trevorrow[13].  

Although the properties of bubbles within bubbly water have been well studied over the last 
century, the bubble-size spectra estimation is still a prospective topic in underwater acoustic, because 
of its wide applications. In this paper, we described the problem of counting bubbles within bubbly 
water and the reliability of the bubble-size spectra estimation. In Section I, the existing bubble-size 
spectra models were briefly introduced, and the theories for estimating the bubble-size spectra were 
introduced in Section II, then in Section III, the estimation errors of bubble-size spectra were 
analyzed, and the last is the summary of this paper. 

The bubble-size spectra models 
As mentioned in the introduction, several bubble-size spectra models have been presented, of which 
the four bubble-size spectra models were adopted as the object to analyze. 

Medwin-Breit  model 
In 1982, Medwin and Breit summarized the near surface bubble-size spectra model using 

experimental data, which is suitable for the bubbles, whose radii is within 30μm ~270μm, and can be 
written shortly as follows: 

 8 2.7( ) 7.8 10 [ /1 ] 30 270N a a m m a mm m m−= × ≤ ≤                                    (1) 
where ( )N a  is the bubble-size spectra within bubbly water along radii, as shown in Fig.1, and a  is 
the radius of the bubble near sea surface, in micrometer.  

Marshall V. Hall model 
In 1989，based on the experimental data measured by Johnson, Cooke and Thorp, another  

bubble-size spectra model near surface was given. 
0( ) N G(a,z)U(w)Y(z,w) 16 1000N a m a mm m= ≤ ≤                           (2) 

Eq.2 is suitable for the bubble of radii within 16μm ~1000μm, 0N is the bubble population near 
surface, in the MarshallV. Hall model  

10 4
0N =1.6 10 m−×                                                                                        (3) 

G(a,z) , the distribution of bubbles is a function of bubble size and the depth of bubble, indicated by 
Eq. 4. 
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where 6
1 (34 1.24 ) 10 ( )a z m−= + × , 2 11.6 ( )a a m= ,and the index p  is a function of bubble depth in 

water, 24.37 ( / 2.55)p z= + . 
3U(w)=(w/13)                                                                                            (5) 

The influence of wind on bubbles distribution U(w) , increases with the cubic of its speed, w  in meter 
per second. 

Y(z,w)=exp(-z/L(w))                                                                           (6) 
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The evolution of bubbles population Y(z,w)  in the vertical reduce with an exponential decay, where 
the exponential index 

0.4 , w 7.5m/s
L(w)

0.4+0.115(w 7.5), w 7.5m/s
≤

=  − >                                                      
 

Thus, substitution of Eq.3, Eq.4, Eq.5, Eq.6 into Eq.2 will derive the bubble-size spectra model near 
surface. The Marshall V. Hall model was plotted in Fig.1. 

Novarini-β and γ model 
In 1998, Novarini presented a similar model with Marshall V. Hall model. The Novarini model 

can be divided into β-distribution and γ-distribution with the different bubble population. The  
Novarini-β distribution is expressed as follows: 

13 4N =2.0 10 mβ
−×                                                                                      (7) 

min
3

1 min 1

1 2
4

2 2 3
4 2.6

3 2 3 3 max

,0
( / ) ,

G (a,z)= 1,
( / ) ,

( / ) ( / ) ,

a a
a a a a a

a a a
a a a a a

a a a a a a a

β
−

− −

<
 ≤ < ≤ <
 ≤ <

≤ <

                                    (8) 

max

max

1,
Y (z,w)=

0,
z z
z z

β
β

β

≤
 >

                                                                            (9) 

And the Novarini-γ can be written as: 
11 4N =6.0 10 mγ

−×                                                                                    (10) 
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                                                                               (12) 
where min 10( )a mm= , 1 15( )a mm= , 2 20( )a mm= , 3 54.4 1.984 ( )a z mm= + , max 1000( )a mm= , 

-2 2
max =1.23 10 wzβ ×  , d 0.6(w 5) 3.5γ = − + . The Novarini model with β-distribution and 

γ-distribution was plotted in Fig.1. 

 
Fig.1 The bubble-size spectra (depth=1m, w=13m/s) 

It is noted that different bubble-size spectra have their own coverage. The four models were plotted in 
Fig.1, the Medwin-Breit model is extent to 10μm ~1000μm. The coverage of Marshall V. Hall model 
is 16μm ~1000μm and that of Novarini model between 10μm and 1000μm. So the estimation must be 
done carefully with the bubbles distribution. 
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The estimation of  bubble-size spectra  

Bubble-size spectra using bubble resonance  
If the bubbles were assumed distributing uniformly and independently, the attenuation of sound 

propagation within bubbly water can be expressed by a function of bubble-size spectra. 

0
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( , )( ) 20lg(e)
( / 1)R
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f f f
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δ

∞

=

= ×
− +∫                                                        (13) 

whereδ is the bubble damping coefficient and is a function of sound frequency and bubble size and 
depth, mainly composed of  thermal damping, radiated damping and viscous damping[5]. When the 
sound wave with frequency f  illuminate the bubble with radius a  at the depth z , the damping 
coefficient could be written as: 

2

2
0

Im( )
Re( )

r
v

a B a
a B c

ωδ δ= + +                                                                                         (14)  

In Eq.14, the first term is the component due to heat diffusion; the second term is the component due 
to radiation; and the third term is due to the molecular viscosity of seawater. ra is the bubble resonant 
radius corresponding to the frequency of the sound wave, which can be derived by: 

 2Re[ ( )] (2 ) / 3 0r rB a faf ρ π− =                                                                           (15) 
where 0c is the speed of sound in bubble-free water, B is the bulk modulus of elasticity of the bubble, 
expressed as:  

2 2
0 / (1 3 ( 1) / 2 [(1 ) coth((1 ) ) 1])B P i a i a i aγ γ f f f= − − + + −                                     (16) 

In addition to being a function of depth, B is also a function of radius a and frequency f . In Eq.16, 
the γ is the ratio of specific heats of the gas in the bubble, 1.4γ = , 0P  is the hydrostatic pressure at 

the bubble, and / 2 Df πω π= , in which gasK / [ ( ) ]gas PD R Cρ=  is the thermal diffusivity of the gas, 

gasK is the thermal conductivity of the gas and can be simplified as a function of temperature, 
2

gasK =A BT CT+ + , 31.52 10A −= × , 57.2342 10B −= × , 99.2207 10C −= − × ; PC  is the specific heats 
of the gas at constant pressure, in units of J/kg/K, rather than in units of J/mol/K,  here the D  is 
simplified to a constant 5 21.84 10 /m s−× .The last term vδ  in Eq.14 is generally denoted using: 

24 / ( )v aδ m ρω=                                                                                                         (17) 

which is the coefficient of molecular viscosity of seawater, where -31.4 10 kg / /m sm ≈ × . 
Therefore, the resonant frequency and the resonant radius of bubble using Eq.15 by numerical 

methods can be obtained. When the depth of bubble and the frequency of sound wave were 
determined, the damping of bubble can be further derived using Eq.14. A typical of damping 
coefficient shown in Fig.2, where the sound frequency is 10kHz, and the depth of bubbles is 5 meter 
beneath surface. It comes out that when the radius of bubble less than 470μm, the  thermal damping 
is the main component of the sum damping coefficient, but the radiated damping will be the main 
component when the radius of bubble larger than 470μm. The sum of damping coefficient decreases 
at first, and then increases very slowly with the radius of the bubble. Thus the damping coefficient is 
frequently treated as a constant. 
Based on Eq.13, the bubble-size spectra estimation was presented by Medwin, only taking the 
resonant bubbles into consideration and the damping coefficient as a constant and ignoring the 
surface tension of bubbles. The estimated bubble-size spectra can be expressed：  

-6 3
0( , ) 4.6 10 ( ) / (1 0.1 )bn z R f f za≈ × + ×                                                       (18) 

where ( )fa is the attenuation of sound propagation in bubbly water, z is the depth of bubbles. So, if 
the attenuation of sound propagation is known, the bubble-size spectra can be determined with Eq.18. 
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Fig.2 The damp coefficient of bubbles (f=10kHz, z=5m) 

Bubble-size spectra estimation using Iterative approach 
To reduce the error in the estimation by Eq.18, an iterative approach was adopted for determining the 
bubble-size spectra. The Eq.13 and Eq.18 were shortly rewritten as: 

( ) ( ( , ))f FT n z aa =                                                                              (19) 
  ( , ) [ ( )]n z a RBA fa=                                                                            (20) 

where the operator FT   denotes the process for calculating the sound propagation attenuation in 
bubbly water with a known bubble-size spectra, and the inverse process is depicted by the operator 
RBA .The sound propagation attenuation at interesting frequency with a known bubble-size spectra 

tn can be expressed by: 
( ) ( )t tf FT na =                                                                                                     (21) 

While, the estimated bubble-size spectra can be denoted by: 
0 [ ( )]tn RBA fa=                                                                                  (22) 

So, the estimation error is written as  
0tn n nε = −                                                                                           (23) 

In order to obtain more accurate bubble-size spectra estimation, the error nε  should be further 
investigated, and the two operators FT and RBA were done on the estimation bubble-size spectra 

0n again. 

0 0( ) ( )f FT na =                                                                                                  (24) 

1 0[ ( )]n RBA fa=                                                                                                 (25) 
So 

'
0 1 [ ( )]n n n RBA FT nε ε= − =                                                                              (26) 

Since the estimation error nε is the first-order small term, the estimation error 'nε is the second-order 
small term, and the two operators FT and RBA represent forward and inverse process, Eq.26 
becomes: 

0[ ( )] tRBA FT n n nε = −                                                                                        (26) 
Above all, it can be obtained that the second-order approximation of bubble-size spectra can be 
expressed as: 

0 12tn n n= −                                                                                                          (27) 
Of course, if the second-order approximation could not still meet requirements, the higher order 
approximation can be similarly done. 

The estimation error analysis of  bubble-size spectra  

Although two methods for estimating bubble-size spectra have been developed, the issue of 
estimation accuracy remains a problem to investigate. Unfortunately, we do not have any known 
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bubble-size spectra and propagation attenuation samples to exam the two methods, so that a 
compromise was made on the issue of estimation accuracy by a known bubble-size spectra, and the 
approximated sound propagation attenuation were gained using Eq.13. Based on this notion, the 
accuracy of bubble-size spectra could be investigated. 

The four bubble-size spectra models above were adopted, and then obtain the approximated sound 
propagation attenuation using Eq.13, where the integration is achieved by numerical solution with 
1μm interval. The four bubble-size spectra were estimated using Eq.18 and Eq.27 respectively, 
plotted in Fig.3. The dashed lines denoted the known bubble-size spectra, and the dotted lines 
represented the estimations of the known bubble-size spectra with bubble resonance, the solid lines 
indicated the estimations of the known bubble-size spectra with the iterative approach. It was shown 
that the main errors happened at the two-end of the bubble-size spectra and the performance of 
bubble-size spectra estimation with the iterative approach was wholly better than that with bubble 
resonance, and the estimation errors were plotted in Fig.4, The dashed lines denoted the bubble-size 
spectra estimation errors with bubble resonance, the solid lines represented bubble-size spectra 
estimation errors with the iterative approach. The conclusion obtained above were verified apparently 
and more detail information shown in Table I.   

  
(a)                                                                                   (b) 

  
(c)                                                                                    (d) 

Fig.3 The bubble-size spectra estimation with Medwin-Breit (a), Marshall V. Hall(b), Novarini-γ 
Model(c), Novarini-β(d) Model 
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(a)                                                                                   (b) 

  
(c)                                                                                  (d) 

Fig.4 The estimation error of bubble-size spectra with Medwin-Breit (a), Marshall V. Hall(b), 
Novarini-γ Model(c), Novarini-β(d) Model  

Table I The results of bubble-size spectra estimation error 
 

Bubble-size 
spectra 

The mean of error The standard deviation of 
error The max error and its radius 

Coverage bubble 
resonance 

iterative 
approach 

bubble 
resonance 

iterative 
approach 

Bubble 
 resonance 

iterative  
approach 

Medwin-Breit 
model 8.00% 1.13% 7.46% 4.69%  48.81%@30μm 34.14%@270μm 30μm~270μm 

Marshall V. 
Hall model 13.26% 2.12% 15.57% 5.91% 163.85%@16μm 89.18%@16μm 16μm~500μm 

Novarini-γ 
model 20.95% 1.11% 13.36% 2.72% 35.67%@10μm 29.18%@10μm 10μm~500μm 

Novarini-β 
model 4.03% 0.32% 7.46% 4.30% 51.35%@10μm 36.90%@10μm 10μm~500μm 

 
The comparison in Table I show that the estimation error means of bubble-size spectra with the 
iterative approach are less than 3%, while as much as 20% with the bubble resonance, meanwhile the 
iterative approach has smaller variance than the bubble resonance. Although the performance of 
bubble-size spectra estimation at the two-end is improved limitedly, the performance of bubble-size 
spectra estimation with iterative approach is wholly better than that with bubble resonance. 

Summary 
The four bubble-size spectra models and the estimation of bubble-size spectra were described briefly 
in this paper, which was used to research the accuracy of the bubble-size spectra estimation. It comes 
out that the bubbles with medium radii can be better determined than the bubbles distributed at the 
two-end and the iterative approach is wholly better for estimating bubble-size spectra than the bubble 
resonance and with  less variation of  the estimation error. Therefore the iterative approach has a 
better performance for determining bubble-size spectra than the resonance. 
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