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Abstract. Working in a passive mode, the result of instability, slow convergence and low 
convergence precision were easy to appear when the underwater target is located by using Kalman 
filtering algorithm, so an adaptive Kalman filtering algorithm based on Doppler frequency was 
proposed. The algorithm estimated the statistical characteristics of the system process noise and 
measurement noise in real-time, dynamically compensate error caused by linearizing observation 
model, and reduce the bad impact by the observation error. Through the simulation, experiments 
show that the algorithm performs better in aspects of convergence precision and stability. 

Introduction 
Tracking and locating the target are always the hot spot in underwater warfare system [1]. In only 
bearing target motion analysis algorithm, we often use rectangular coordinate system to establish 
the target state equation and measurement equation, and the Kalman filtering algorithm [2] to 
estimate the target parameter information. Due to the nonlinearity of the observation equation and 
the measurement equation, the equations should be converted into linear equations, which is the 
extended Kalman filtering idea [3]. But the statistical characteristic of state noise and measurement 
noise are needed to be accurate, which is difficult to satisfy in practice. Therefore, the researchers 
put forward some algorithms, such as adaptive Kalman filtering algorithm based on Sage-Husa [4], 
the fading factor, the memory factor [5], the information [6], multiple model method [7] and so on. 
But only bearing target motion analysis algorithm requires the submarine to maneuver itself at least 
once, which brings certain restrictions to observability and concealment. Because the observation 
equation is nonlinear, so we often adopt the extended Kalman filtering algorithm [8]. To solve 
above problems, an adaptive Kalman filtering algorithm based on Doppler frequency is proposed in 
this paper. The algorithm estimates the system noise and observation noise in real-time, 
compensating dynamically the error of linearization and observation to reduce the impact of error. 
The result which is simulated shows that the algorithm can be better to eliminate the linear error and 
observation error as well as to improve the stability of the filter and the precision of the 
convergence. 

The mathematical model of the Kalman filter 
In this paper, we assume that the target and observation platform both move in the same horizontal 
plane, and keep a constant velocity in a straight line. 

The transfer equation of the target motion. Continuous dynamic model of the system, 

( ) ( 1)X k AX k W= − + .                 (1) 
The observation equations of bearing and Doppler frequency. The observation model is, 
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The iterative equation of the extended Kalman filter. The observation model is nonlinear, so 
the observation matrix needs to be linearized. 
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So the extended Kalman filtering process goes as follows: 
1) One-step predictive state, 

( | 1) ( 1| 1)X k k AX k k− = − −  .               (4) 
2) One-step predictive state error covariance matrix, 

( | 1) ( 1| 1) TP k k AP k k A Q− = − − + .              (5) 
3) The estimation of Kalman filtering gain matrix, 

1( ) ( | 1) ( )( ( ) ( | 1) ( ) )T TG k P k k H k H k P k k H k R −= − − + .           (6) 
4) The information error matrix of observation, 

( ) ( )1 2( ) ( ) ( ) ( | 1) ( | 1)
TTe k Z k Z k F k k f k k= − − − .           (7) 

5) Update state forecast, 

( | ) ( | 1) ( ) ( )X k k X k k G k e k= − + .               (8) 
6) Update error covariance matrix, 

( | ) ( ( ) ( )) ( | 1)P k k E G k H k P k k= − − .              (9) 

The Adaptive Statistical Properties of Noise 
According to the literature [9], the extended Kalman filtering algorithm which assumes the noise 
invariance will bring in greater error, resulting in the poor effect of the target state analysis. To 
solve above problems, the mean and variance of the state noise and observation noise are adaptively 
estimated real-time in the system. 

The covariance matrix of process noise and measurement noise play an important role in Kalman 
filtering algorithm. Firstly, discuss about the covariance matrix of process noise. According to 
literature [13], in common sense, if the covariance matrix of process noise is too small, state 
estimation will generate deviation, but if the covariance matrix of process noise is too large, state 
estimation will generate oscillation. The main idea is to do the statistics of the difference of the state 
step prediction with further prediction in certain time, and to reverse back to determine the 
covariance matrix of process noise based on the statistical law. When deviation is appeared from the 
statistical state estimation, increase the value. When oscillation is happened the statistical state 
estimation, reduce the value. The covariance matrix of process noise goes as follows, 

(1 ) ( ), ( )
( 1) (1 ) ( ), ( )

( ),

     
     

   

k

k

d Q k if X k is biased
Q k d Q k elseif X k is

Q k els
oscillate

e other
d

+ ∆
+ = − ∆



.           (10) 

Where 1(1 ) / (1 )k
kd b b += − − , 0 1b< <  and b  is the fading factor. 

Next, discuss the covariance matrix of observation noise. The adaptive method of measurement 
noise covariance matrix is determined by the information which is obtained by Eq.7 in the iterative 
process. If large observation error exists in the system, estimated filtering state will exceed actual 
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state. In this case, the covariance matrix of observation noise needs to be adjusted adaptively to 
ensure accuracy and stability of filtering. In the adaptive process, a coefficient matrix of the 
measurement noise covariance matrix is needed to make sure that the estimated state of filtering 
matches its actual state. Therefore, the coefficient matrix added to filtering algorithm can be 
expressed as, 

( ) ( ) ( ) ( | 1) ( ) ( ) ( )T Te k e k H k P k k H k S k R k= − + .            (11) 

1( ) ( ( ) ( ) ( ) ( | 1) ( )) ( )T TS k e k e k H k P k k H k R k−= − − .            (12) 
In Kalman filtering algorithm, the coefficient matrix is a unit matrix, which means that estimated 

state has matched its actual state. Because of measurement noise and the error of calculating, the 
coefficient matrix computed from Eq.12 may be non-diagonal matrix, or its diagonal elements are 
negative, or its diagonal elements are less than 1, which is impossible in the actual dynamics. To 
avoid this situation, the assignment of the coefficient matrix requires the following rules: 

* * * *
1 2( , , , )nS diag s s s=  .                 (13) 

* 1( ) ( | 1) ( )( ( ) ( | 1) ( ) ( ) ( ))T TG k P k k H k H k P k k H k S k R k −= − − + .         (14) 

*( 1) ( ) ( )R k S k R k+ = .                 (15) 

The Experimental Simulation and Analysis 
In order to verify the effectiveness of adaptive Kalman filtering algorithm based on Doppler 
frequency, respectively take adaptive Kalman filtering algorithm and extended kalman filtering 
algorithm to estimate when fixing the underwater target tracking in the simulation system. 
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Fig.1 the Estimated Curves of Extended Kalman Filter and Adaptive Kalman Filter 
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Table 1 Parameters of the mean square error 
A\P Vx[kn] Vy[kn] C[d] X[m] Y[m] 
EKF 0.4455 0.1855 1.0496 62.8289 24.3941 

AEKF 0.2672 0.1059 0.2606 35.3824 11.3296 
Initial conditions: assume that the target and observation platform both keep constant direct 

movement. If the speed of target is 18 knot, the course 120 degree, the initial position of 0 degrees, 
located in due north direction observation platform, the speed of the observation platform is 6 knot, 
and the course is 0 degree. In the initial time, the interval distance of both is 20 km. 

Through the simulation curves compared in Fig.1, the extended Kalman filter cannot suppress 
linearizing error increases. Therefore its performance will gradually become poor with the 
accumulation of filter, but the adaptive Kalman filter can finally get good filtering effect through 
making real-time estimation on statistical characteristics of state noise and observation noise and 
making up for the error caused by linearization. Table 1 figures out that the effect of adaptive 
Kalman filter is relatively better than regular extended Kalman filter, and the parameters of target 
have better stability as well as filtering accuracy. The main specific reason is regular extended 
Kalman filtering which adopts fixed system noise matrix and measurement noise matrix. But when 
there is a big difference between the actual system and the selected matrix, filtering error will 
increase even divergent, while adaptive Kalman filter is estimating the matrix to reduce the model 
error through the statistical characteristics of process noise and measurement noise real-time in 
current system, to restrain filtering divergence, improve the filtering accuracy and stability. 

Conclusions 
Working in a passive mode, the result of instability, divergence, deviation, slow convergence and 
low convergence precision was easy to appear when tracking. And the BOTMA can destruct the 
concealment of the observation platform because it needs to do some motor. To solve the above 
problems, the paper puts forward out an adaptive Kalman filtering algorithm based on Doppler 
frequency, which makes use of measurement of azimuth sequence and Doppler line-spectrum 
frequency shift. The simulation results show that the algorithm compensates and makes up for the 
errors caused by the linearization of the system state model and observation model through 
estimating the statistical characteristics of the system state noise and observation noise real-time, to 
improve the stability and convergence precision of the filter, and gain good filtering effect. 
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