
Fast Synthesis and Rendering of BTF on 
Arbitrary Surfaces 
Zhan Zhang1  Yue Qi1  Yong Hu1   

1State Key Lab. of Virtual Reality Technology, Beihang University, Beijing 100083, 
China 

E-mail:zhangzhan@vrlab.buaa.edu.cn 
 

Abstract  

This paper proposes an approach for BTF 
(Bidirectional Texture Function) synthe-
sis and rendering. A BTF can be regarded 
as a kind of multi-dimensional texture, 
which preciously shows self-shadow, 
self-occlusion and inter-reflection ap-
pearance of object surfaces under varying 
view- and light-directions. However, it is 
difficult to use BTF on object surfaces 
because of its huge data and small size. 
Our method uses PCA algorithm to com-
press BTF data, and then we propose a 
Wang tiles based synthesis algorithm to 
solve its size problem. To keep consis-
tency of multi-dimensional, we also pro-
pose an error determination algorithm for 
Wang tiles’ construction in synthesis 
process. Using the method we proposed 
can render BTF on arbitrary object sur-
faces efficiently and quickly.  

Keywords: Bidirectional Texture Func-
tion (BTF), PCA, Compression, Wang 
tiles, Synthesis, GPU 

1. Introduction 

Accurate modeling of real world has al-
ways gained great attention in Computer 
Graphics and Computer Vision. Today, 
geometric modeling like using image-
based modeling method and 3D scanner 
can explicitly get geometry of object to a 
certain scale. In contrast, attribute model-

ing of surface reflection is difficult, be-
cause it needs high-dimensional function 
to represent light transporting process 
when crosses an object surface, and this 
brings problems to data acquisition, com-
pression and rendering.  
    Bidirectional Texture Function (BTF) 
can solve the problem. Dana et al. [1] in-
troduced BTF, a 6-dimensional texture 
representation in 1999. A BTF of certain 
material is represented by a set of images 
with different view- and light-directions. 
It can preciously show the self-shadow, 
self-occlusion and inter-reflection ap-
pearance of object surfaces when view 
and light changing. 
    Normally it needs thousands of images 
to represent a BTF, which makes it nec-
essary to compress them before rendering. 
Also, BTF should be synthesized when 
used on object surfaces because BTF 
sample is a small plane for the limitation 
of acquisition equipment. 
    In this paper, we introduce some re-
search works on BTF in section 2. And in 
section 3, we use PCA algorithm to com-
press BTF. In section 4, we propose a 
BTF synthesis method based on Wang 
tiles and also propose an error determina-
tion algorithm in synthesis process to 
keep the continuity of BTF. Finally in 
section 5, we give the compression, syn-
thesis and rendering results.  

2. Related Work 

Proceedings of the 11th Joint Conference on Information Sciences (2008) 
                                          Published by Atlantis Press 
                                                    © the authors 
                                                                1



2.1. Bidirectional Texture Function 

Using densely sampled BTF instead of 
ordinary 2D texture makes more realistic 
appearance of material. BTF research 
work includes these steps: acquisition, 
compression, and synthesis.  

2.1.1. Acquisition  

Dana et al. [1] was the first to use go-
nioreflectometer-like setup with CCD-
Chips to capture spatial variance of re-
flection, and they created BTF database 
called CUReT [2]. Furukawa et al. [4] 
proposed a method using range cameras 
and a reconfigurable camera array to cap-
ture BTF. At the same time, Bonn Uni-
versity [3] designed an automatic acquisi-
tion system with an HMI (Hydrargyrum 
Medium Arc Length Iodide) bulb, a robot 
holding the sample and a rail-mounted 
CCD camera, which can capture BTF 
quickly. 

2.1.2. Compression 

It is not doable to render BTF using raw 
data because it is really huge. Van 
Ginnneken et al. [4] proposed a method 
using texture histogram to correlate tex-
ture with viewing and irradiance changes. 
Leung and Malik [15] proposed the con-
cept of Texton, and used it to cluster BTF 
under varying view- and light-directions. 
Suykens [6] represented BTF as spatially 
variant BRDF and compressed it using 
chained matrix factorization (CMF). 
Wong et al. [7] applied Spherical Har-
monic transform to compress BTF in a 
frequency domain. PCA can also be used 
in BTF compression. 

2.1.3. Synthesis 

For the limitation of BTF sample size, it 
needs to be synthesized when applied to 
object surfaces. Liu [8] first synthesized 
BTF using 2D texture synthesis methods. 
His method needed to compute similarity 

from shading shape. Tong et al. [9] im-
proved the method and used k-coherent   
and Texton to synthesize BTF on arbi-
trary surfaces. Recently, Zhou et al. [10] 
designed an interactive system to synthe-
size BTF using Graph-cut methods.  

2.2. Wang Tiles 

The theory of Wang tiles was given in 
early 1960s. Hao Wang proposed that a 
set of tiles with colored edges could gen-
erate a plane of any size non-periodically 
with edges sharing same color matched. 
And this theory was extended to Com-
puter Graphics these years. 
Stam et al. [11] applied Wang tiles to tex-
ture creation. Cohen et al. [12] extended 
Wang tiles to 2D texture synthesis and 
proposed an automatic synthesis method. 
Chenny et al. [13] later applied Wang 
tiles to create animated flow pattern. 
Wang tiles were extended to contain flow 
information. Wei et al. [14] designed an 
arrangement scheme to correct the texture 
filtering problem across tile images. Later, 
Fu and Leung [16] gave a method of us-
ing Wang tiles on any topologic surfaces. 
Kopf [17] proposed a synthesis method 
using recursion algorithm. Recently, La-
gae and Dutre [18] proposed a new Wang 
tile based method matching the corner 
color instead of edge color. 

3. Compression  

Normally, light-dependent variations of 
appearances with fixed views are rela-
tively smooth and can be easily interpo-
lated and approximated. We use PCA for 
this purpose, approximating light-
dependent variation of object appearances 
and keeping view-dependent variation 
discrete. A certain material shows similar 
features under different view- and light-
directions. So PCA can use a few compo-
nents to reconstruct the raw BTF. 

Proceedings of the 11th Joint Conference on Information Sciences (2008) 
                                          Published by Atlantis Press 
                                                    © the authors 
                                                                2



    The image set of view direction j con-
structs the matrix 

j
T and its average ma-

trix
j
T . We get the adjusted matrix 

j
T !  

from 
j
T  by subtracting

j
T . Eigenvec-

tors
1
...

n
E E of 

j
T !  is known as eigen-

textures. Using first c eigenvectors can 
reconstruct images under any light direc-
tions, as in equation (1). 
 

1

, 1...

c

ij ik k ij

k

N E T i n!
=

= + ="    (1) 

 
Where 

ij
N  denotes the texture in light 

direction i and view direction j , 
ijT  de-

notes the average texture in light direc-
tion i and view direction j, 

ik
! is com-

puted as equation (2). 
 

, 1...ik ij kT E i n! "=< > =   (2) 

 
    Fig.1 shows the result of reconstructed 
image when c value chosen 5.   
 

   
                   (a)                       (b) 
Fig.1: reconstruction result. (a) is raw image 
and (b) is reconstructed image 
 
    The error between raw and recon-
structed images is less than 2.22%, the 
compression ration is 6.17% 

4. Synthesis 

4.1. Overview 

Certain pixels in different images have 
varying values which introduces inconsis-
tent mesostructures for BTF synthesis. 
We represent compressed BTF as a multi-
dimensional texture when synthesis to 

keep the consistency of each dimension. 
The overview of our method is depicted 
in Fig.2. 
 

Compressed 

BTF

BTF 

Patches 

Wang 

tiles

Synthesized

BTF

rendering 3D model

Cutting Path 

Computation

 
Fig.2: overview of our synthesis method 
 
From compressed BTF random choose 
four patches for a tile with error 

max
d d<  

in the overlap region. Then compute a 
cutting path between every two adjacent 
patches. A Wang tile is generated along 
the cutting path. BTF can be synthesized 
to any size using a set of Wang tiles and 
rendered on object surfaces. 

4.2. Error Computation 

It is necessary to compute error in overlap 
region between two patches to keep the 
continuity of patches. We propose a 
method to determine the error threshold 
according to PCA, as in equation (3), (4). 
 

1 2 2

1 1 1

1
( )

V c N

v m k k

v m k

d p p
N

! "
= = =

= #$ $ $ (3) 

1 2

max

1 1 1

1
( )

V c N

v m k

v m k

d p
N

! " #
= = =

= $ $ $ (4) 

 
N denotes the number of pixels in the 
overlap region, c denotes the principle 
components number chosen by PCA, βm , 
αv are coefficients separately in light-
direction m and view-direction v, 1

kp  and 
2

kp  are color of pixel k in two adjacent 
patches, ε is the error sensitive parameter 
by which to adjust the error tolerance. 
    Regarding BTF as a c-channel, values 
for each pixel represent light and view 
variations of the BTF. All light and view 

Proceedings of the 11th Joint Conference on Information Sciences (2008) 
                                          Published by Atlantis Press 
                                                    © the authors 
                                                                3



variations are integrated into the error 
function by just summing up the errors 
for all c channels. 

4.3. Cutting-path and Wang tiles Con-
struction 

We propose a Wang tile construction 
method for BTF and using them for fast 
synthesis. The construction of Wang tiles 
is depicted in Fig.3. 
 

 

Fig.3: Construction of Wang tile 
 

Four diamond (got by rotating 45°) 
patches are random chosen within error 
threshold. Compute cutting paths which 
show similarity of two patches in every 
overlap region and a Wang tile is con-
structed along cutting path’s end point. In 
the overlap region, we use Dijkstra algo-
rithm to determine the cutting path. 
     To create a continuous BTF from a 
small size sample, Wang tiles must be 
found for each fit together across the 
boundaries with matching colors. 

4.4. Rendering 

We render BTF in glsl Shader. Input is 
Synthesized BTF which is represented as 
c 2D textures. Weights got by PCA are 
also stored in a 2D texture. 
 Previously compute a delaunay trian-
gulation of the hemispheres which dis-
tributes the acquisition directions for 
view and light separately. 
     In Vertex Shader, light and view di-
rections for model vertexes are computed. 

Be sure they are in vertex coordinate sys-
tem. In Fragment Shader, search the tri-
angles view- and light- directions belongs 
to. Final color can be approximated by 
tri-linear interpolation from three ver-
texes, see equation (5) (6). 
 

3

1, 1

i j ij

i j

T vw lw T
= =

= !  (5) 

 

1

v 2 3

2 3

1 1 1

1 2 3

1 2 3

1 1 1

x x

v y y

vw
x x x

y y y

=   (6) 

                     
i

vw  and 
i
vl  define the weights of three 

vertexes. ( , )xi yi is vertex coordinates. 
Other weights can be got similar as 

1
vw  . 

ij
T  are the sample texture in view-
direction i and light-directon j. BTF can 
rendered on arbitrary surfaces smoothly 
using this interpolation method, detailed 
results are included in section 5. 

5. Results 

We implemented our synthesis and ren-
dering method on a PC with 3.4GHz CPU, 
1G memory and 8800GT graphics board. 
BTF samples are from Bonn BTF data-
base [3]: WOOL and IMPALLA. These 
samples are captured with 81 view- and 
81 light- directions, resulting in a set of 
total 6,561 sample images. The models 
we choose are bunny and shark. 
    The experiment results are shown in 
table 1. From it can conclude that the size 
of texture affects little in rendering speed 
but much in pre-computation time. The 
rendering results are shown in Fig.4, (a), 
(d) are BTF sample IMPALLA and 
WOOL. (b), (c) are the results of sample 
IMPALLA applied to bunny and (e), (f) 

Proceedings of the 11th Joint Conference on Information Sciences (2008) 
                                          Published by Atlantis Press 
                                                    © the authors 
                                                                4



are the results of sample WOOL applied 
to shark. We can see realistic appearance 

on object surfaces when light and view 
direction changes. 

 
Table 1. Experiment result 

Sample(model) Sample 
size 

Model size 
(triangles) 

Synthesized  
BTF size 

Pre-computation 
time 

Fps 

IMPALLA (bunny) 128*128 30660 1024*1024 44mins 106 
WOOL(shark) 256*256 20588 1024*1024 32mins 134 

   

     
                    (a)                            (b)                                                 (c) 
 

     
                   (d)                             (e)                                                  (f) 
Fig.4: rendering results. (a), (d) are sample WOOL and IMPALLA. (b), (c) show the result of sam-
ple WOOL applied to bunny and (e), (f) show the result of sample IMPALLA applied to bird. 
 

6. Conclusion 

The huge data and small size makes it 
difficult to really use BTF. In this paper, 
we applied PCA to compression and pro-
posed a BTF synthesis method, which can 
be used to effectively render BTF on arbi-
trary surfaces.  
    Our synthesis method is applicable to 
isotropic material but it won’t work well 
to anisotropic pattern, because our 
method only considers edges matching.  

    Also, multi- material BTF may be an 
interesting research point in the future. 

7. Acknowledgement 

This paper is supported by National Na-
ture Science Foundation of China (No. 
60533070 and 60773153), the Key grant 
Project of Chinese Ministry of Education 
(No. 308004), the Project of Chinese 
Ministry of Science and Technology (No. 
2006BAK12B09), the Project of Beijing 
Municipal Science and Technology 

Proceedings of the 11th Joint Conference on Information Sciences (2008) 
                                          Published by Atlantis Press 
                                                    © the authors 
                                                                5



Commission (No. Z07000100560714), 
National High Technology Project (863 
Project) (2006AA01Z333). 

8. References  

[1] K.J. Dana, B. van Ginneken, S.K. 
Nayar, and J.J. Koenderink, “Reflec-
tance and Texture of Real World Sur-
faces,” ACM Trans. Graphics, vol. 
18, no. 1, pp. 1-34, Jan. 1999.  

[2] http://www.cs.columbia.edu/CAVE/s
oftware/curet/in-dex.php. 

[3] http://btf.cs.uni- bonn.de. 
[4] R. Furukawa, H. Kawasaki, K. Ike-

uchi and M. Sakauchi, “Appearance 
Based Object Modeling Using Tex- 
ture Database: Acquisition, Compres-
sion and Rendering,” Proc. 13th Eu-
rographics Workshop Rendering 
(EGRW 02), pp. 257-266, 2002. 

[5] B. Van Ginneken, J.J. Koenderink, 
and K.J. Dana, “Texture Histograms 
as a Function of Irradiation and 
Viewing Direction,” Computer Vi-
sion, vol. 31, no. 2-3, pp. 169-184, 
1999. 

[6] F. Suykens, K. vom Berge, A. Lagae, 
and P. Dutre, “Interactive Rendering 
with Bidirectional Texture Func-
tions,” Computer Graphics Forum, 
vol. 22, no. 3, Sept. 2003. 

[7] P.M. Lam, C.S. Leung, and T.T. 
Wong, “Noise Resistant Fitting for 
Spherical Harmonics,” IEEE Trans. 
Visualization and Computer Graph-
ics, vol. 12, no. 2, pp. 254-265, 
Mar./Apr. 2006. 

[8] X. Liu, Y. Yu, and H. Y. Shum, 
“Synthesizing Bidirectional Texture 
Functions for Real-World Surfaces,” 
Proc. Int. Conf. Computer Graphics 
(SIG- GRAPH 01), pp. 97-106, 2001. 

[9] X. Tong, J. Zhang, L. Liu, X. Wang, 
B. Guo, and H. Y. Shum, “Synthesis 
of Bidirectional Texture Functions on 
Arbitrary Surfaces,” ACM Trans. 

Graphics, vol. 21, no. 3, pp. 665-672, 
2002. 

[10] K. Zhou, P. Du, L. Wang, J. Shi, B. 
Guo, and H. Y. Shum, “Decorating 
Surfaces with Bidirectional Texture 
Functions,” IEEE Trans. Visualiza-
tion and Computer Graphics, vol. 11, 
no. 5, pp. 519- 528, 2005. 

[11] J. Stam, “Aperiodic Texture Map-
ping,” Technical Report R046, Euro-
pean Research Consortium for Infor-
matics and Math., 1997. 

[12] M. F. Cohen, J. Shade, S. Hiller, and 
O. Deussen, “Wang Tiles for Image 
and Texture Generation,” ACM 
Trans. Graphics, vol. 22, no. 3, pp. 
287-294, 2003. 

[13] S. Chenney, “Flow Tiles,” Proc. 
ACM SIGGRAPH/ Euro-graphics 
Symp. Computer Animation, pp. 233- 
242, 2004. 

[14] L. Y. Wei, “Tile-Based Texture 
Mapping on Graphics Hardware,” 
Proc. SIGGRAPH/Eurographics 
Conf. Graphics Hardware, pp. 55-63, 
2004. 

[15] T. Leung and J. Malik, “Represent-
ing and Recognizing the Visual Ap-
pearance of Materials Using Three-
Dimensional Textons,” Int’. J. Com-
puter Vision, vol. 43, no. 1, pp. 29-44, 
2001. 

[16] C. W. Fu and M. K. Leung, “Texture 
Tiling on Arbitrary Topological  Sur-
faces Using Wang Tiles,” Proc. Euro- 
graphics Symp.Rendering (EGSR 
’05), pp. 99-104, June 2005. 

[17] J. Kopf, D. Cohen, O. Deussen, and 
D. Lischinski, “Recursive Wang Tiles 
for Real-Time Blue Noise,” ACM 
Trans. Graphics, vol. 25, no. 3, pp. 
509-518, 2006. 

[18] A. Lagae and P. Dutre, “An Alterna-
tive for Wang Tiles: Colored Edges 
versus Colored Corners,” ACM Trans. 
Graphics, vol. 25,no. 4, pp. 1442-
1459, Oct. 2006. 

 

Proceedings of the 11th Joint Conference on Information Sciences (2008) 
                                          Published by Atlantis Press 
                                                    © the authors 
                                                                6




