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Abstract. In this paper, we consider the quasilinear Schr odinger equation with critical growth 
*22 22 ( ) ( , ), Nu u u V x u u u g x u xλ −−∆ − ∆ + = + ∈� .We employ the perturbation approach developed 

by Xiangqing Liu [9] and the generalized linking approach and obtain the infinitely many 
geometrically distinct solutions. 

Introduction and Preliminaries 
In this paper, we study the following quasilinear Schr odinger equation with critical growth 

*22 22 ( ) ( , ), Nu u u V x u u u g x u xλ −−∆ − ∆ + = + ∈� ,                                    (1.1)  

where * 20, 2 ( 3), ( , )
2

NN N g C
N

λ ≥ = ≥ ∈ ×
−

� � �  and ( , )NV C∈ � � , whose weak variational 

formulation is to look for 1( ) ( )N Nu H L∞∈ � 1 �  such that 

 222 ( ) ( )
N N N

u dx u u u u dx V x u dxϕ λ ϕ ϕ ϕ∇ ∇ + ∇ ∇ + ∇ +∫ ∫ ∫� � �

*22 2 ( , ) 0
N N

u u dx g x u dxϕ ϕ−− − =∫ ∫� �
                               

for all 1( ) ( )N NH Lϕ ∞∈ � 1 � . 
When 1λ = , the following quasilinear Schr odinger equation 

       2( ) ( ) ( , ), Nu V x u u u g x u x−∆ + −∆ = ∈� ,                                                             (1.2)  
has been studied recently by several authors, see [2,3,6] and the refferences therein. Solutions of 
equation (1.2)  are standing waves the following quasilinear Schr odinger equation of the form 

      2 2( ) ( ( )) ( ) ( , ) 0, N
ti V x k g x xψ ψ ψ α ψ α ψ ψ ψ′+ ∆ − + ∆ + = ∈� ,                                (1.3)  

where ( )V x is a given potential, k is a real constant, α and g  are real functions. The quasilinear 
Schr odinger equations (1.3)  are derived as models of several physical phenomena, such as see[8, 
11]. It begins with [10] for the studies on mathematics. Several methods can be used to solve the 
equation (1.2) , such as, the existence of a positive ground state solution has been studied in [14] by 
using a constrained minimization argument; the problem is transformed to a semilinear one in [1, 2] 
by a change of variables; Nehari method is used to get the existence results of ground state solutions 
in [12]. In [4], by a dual approach (precisely, a change of variables), an existence theorem for 
infinitely many periodic orbits of solutions for the equation (1.2)  was obtained. 

In this paper, our aim is to search the existence of infinitely many pairs of geometrically distinct 
solutions for problem (1.1)  via the perturbation approach due to [9]. 

We need the following several notations. Let { }1 2 2( ) : ( ) : ( )N N NH u L u L= ∈ ∇ ∈� � � with the inner 

product 1, ( )
NH

u v u v uv dx= ∇ ∇ +∫� and the norm 1

2 2 2( )
NH

u u u dx= ∇ +∫� . Let the following 
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assumption ( )V hold: 
( )V  ( , )NV C∈ � � , 00 : inf ( )

Nx
V V x

∈
< =

�
 and 1( , , )NV x x is 1-periodic in , 1, ,ix i N=  . 

Set 1 1,4( ) ( )N NE H W= � 1 � with the norm 1 1,4 ( )NE H W
u u u= +

�
.Then E  is a separable reflexive 

Banach space. The following embeddings are continuous: *( ), [2, 22 ]s NE L s→ ∈� ,where we denote 
by 

s
⋅ the norm of ( )s NL � . The following embeddings are compact: *( ), [2, 22 )s NE L s→ ∈� . 

Moreover, we need the following assumptions: 
1( )g  Let ( , )Ng C∈ ×� � � , 1( , , , )Ng x x s be1-periodic in ix ,1 i N≤ ≤ , ( , )g x s  is odd in s . 

2( )g  there exists *4 22p< < such that 1( , ) (1 )pg x t C t −≤ +  for all ( , )x t ∈ N ×� � . 

3( )g  ( , ) ( )g x t t=  uniformly in x as 0t → and ( , ) 0tg x t ≥ for all ( , )x t ∈ N ×� � . 

4( )g  4

( , )lim
t

G x t
t→+∞

= +∞ uniformly in Nx∈� , where 
0

( , ) : ( , )
t

G x t g x s ds= ∫ . 

5( )g  ( , ) 4 ( , ) ( , ) 4 ( , ), ( , ) , [0,1]Ntg x t G x t stg x st G x st x t s− ≥ − ∀ ∈ × ∀ ∈� � . 
The equation (1.1) is the Euler-Lagrange equation of the energy functional 

2 22 21 1( ) ( ( ) 2 )
2 2N N

J u u dx V x u u u dxλ= ∇ + + ∇∫ ∫� �

*22
*

1 ( , )
22 N N

u dx G x u dx− −∫ ∫� �
. 

For (0,1]θ ∈ , let 4 41( ) ( ) ( )
4 N

J u u u dx J uθ θ= ∇ + +∫� . Similar to Lemma 2.1 in [5] we can 

proof that J and 1( , )J C Eθ ∈ � . 
Let∗denote the action of NZ on 1( )NH � given by ( )( ) : ( ), Nk u x u x k k Z∗ = − ∈ . Set 
( ) : { : }Nu k u k ZΟ = ∗ ∈ . ( )uΟ is called the orbit of u with respect to the action of NZ .Under the 

assuming conditions, if u is a solution of (1.1) , then so is k u∗ for all Nk Z∈ . If 
1 1,4

0 ( ) ( )N Nu H W∈ � 1 � is a critical point of a functional F and F is NZ -invariant, i.e. 
( ) ( )F k u F u∗ = for all Nk Z∈ and all 1 1,4( ) ( )N Nu H W∈ � 1 � , then 0( )uΟ is called a critical orbit of F . 

Two solutions 1 2,u u of (1.1) are said to be geometrically distinct if  1 2( ) ( )u uΟ ≠ Ο . 
A sequence{ }nu E⊂ is called a P. S. sequence of J if { ( )}nJ u is bounded and ( ) 0nJ u →  in *E . We 

say that J satisfies the P. S. condition if every P. S. sequence possesses a convergent subsequence.  
The main result of this paper is the following. 
Theorem 1.1 Suppose that ( )V and 1( )g - 5( )g are satisfied. Then the equation (1.1) admits 

infinitely many pairs u± of geometrically distinct solutions. 
Remark 1.1 For the case of non-critical growth, notice that 5( )g is weaker than the following 5( )g ′ . 

Hence, our Theorem 1.1, at the case 1λ = , improves Theorem1.1 in[4], and our method is different 

from[4]. 5( )g ′  3

( , )g x t
t

is non-increasing on ( ,0)−∞ and non-decreasing on (0, )∞ . 

Throughout the paper, , , iC c C and ic express distinct constants.  

The proof of the main result 

To begin with, we define, for each fixed (0,1],θ ∈ ( ) : { \{0}: ( ), 0}M M u E J u uθθ ′= = ∈ = . For 

any \{0}u E∈ and 0t > ,set ( ) : ( )h t J tuθ= . 
We divide the proof of Theorem 1.1 into the following Lemmas. 
Lemma 2.1 For each \{0}u E∈ ,there exists an unique 0ut > such that

0
( ) max ( )u

s
h t h s

≥
= , 
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( ) 0h t′ > for 0 ut t< < and ( ) 0h t′ <  for ut t< . Moreover, tu M∈ if and only if ut t= . 
   Proof. For any 0ε > , by 2( )g and 3( )g , there exists 0Cε > such that 

1 2( , ) , ( , ) , ( , ) .p p Ng x u u C u G x u u C u x uε εε ε−≤ + ≤ + ∀ ∈ ×� �                        (2.1)  
Hence h has a positive maximum and there exist a 0ut > such that ( ) 0uh t′ = and ( ) 0h t′ > for 0 ut t< < . 

We claim that ( ) 0h t′ ≠ for all ut t> . Indeed, if the conclusion is false, then, from the above 
arguments, there exists a 2ut t< < +∞ such that 2( ) 0h t′ = and 2( ) ( )uh t h t≥ . But 5( )g implies that       

**2 222 2 22
2

1 1( ) ( )
4 2N Nu uh t t u V x u dx t u dx

N
 > ∇ + + ∫ ∫� �

1 ( , ) ( , ) ( )
4N u u u ug x t u t u G x t u dx h t + − =  ∫� . 

This is a contradiction. This claim is proved.  
The second conclusion is an immediate consequence of the fact that 1( ) ( ),h t t J tu tuθ

− ′′ = . This 

completes the proof of Lemma 2.1. 
Lemma 2.2 (1)There exists a 0ρ > such that ( ) : inf ( ) inf ( ) 0

u M u S
c J u J u

ρ
θ θθ

∈ ∈
= ≥ > and there exists a 

constant 0 0δ > such that 0E
u δ≥ for all u M∈ ,where : { : }

E
S u E uρ ρ= ∈ = . 

(2)There exists a positive number 1δ independent of θ such that 1( )c θ δ≥ . 

Proof. For any 0ρ > , if u E∈ with
E

u ρ≤ , then 22 4
N

u u dx ρ∇ ≤∫� .Hence for small 0ρ >  and 

0

4
Vε < , by 2 3( ), ( ), ( )V g g and the Sobolev inequality, one has 

4 24 2 21 1( ) ( ) (1 2 ) ( )
4 2 2N N N

J u u u dx u u dx V x u dxθ
θ λ≥ ∇ + + + ∇ +∫ ∫ ∫� � �

 

* *22 222
*

1 ( )
22 N N

u dx u C u dxεε− − +∫ ∫� �
1,4 1

4 2 4
2 ( )

4 W H E
u C u C uθ θ≥ + ≥  

Whenever 
E

u ρ≤ . For any u M∈ , Lemma 2.1 implies that
0

( ) max ( )
t

J u J tuθ θ≥
= . Take a 0s >  with 

su Sρ∈ . Then 4( ) ( ) inf ( ) ( ) 0
v S

J u J su J v C
ρ

θ θ θ θ ρ
∈

≥ ≥ ≥ >  and hence ( ) : inf ( ) inf ( ) 0
u M v S

c J u J v
ρ

θ θθ
∈ ∈

= ≥ > . 

Moreover, for each u M∈ , by 3( )g , one has 4 2
3( ) ( )

E E
c C u uθ ≤ + . Hence there exists a constant 

0 0δ > such that 0E
u δ≥ for all u M∈ . 

 Further, for any 0ρ > , if u E∈ with 1

1
22 4( ) : ( )

NH
u u u u dxα ρ= + ∇ ≤∫� , then 22 4

N
u u dx ρ∇ ≤∫� . 

Hence for small 0 0ρ > and 0

4
Vε < , by 2 3( ), ( ), ( )V g g  and the Sobolev inequality, one has 

1

2 22( ) ( )
NH

J u C u u u dxθ ≥ + ∇∫� whenever 0( )uα ρ≤ . For any u M∈ ,Lemma 2.1 implies that 

0
( ) max ( )

t
J u J tuθ θ≥

= . Take a 0s > with 0( )suα ρ= . Then 4
0 1( ) ( ) : 0

2
CJ u J suθ θ ρ δ≥ ≥ = > , hence 

1( )c θ δ≥ . This completes the proof of Lemma 2.2. 
Lemma 2.3 Jθ is coercive on M ,i.e. ( )J uθ → +∞ as ,

E
u u M→∞ ∈ . 

Proof. Arguing by contradiction, suppose there exists a sequence{ }nu M⊂ , such that n E
u →∞  

and ( )nJ u dθ ≤ for some 0d < . By 5( )g and ( )V , one has 
*2 2 22

0
1 1 1( ) ( ), min{1, } ( )
4 4 2N Nn n n n n nd J u J u u V u u dx u dx

Nθ θ
′≥ − ≥ ∇ + +∫ ∫� �

. 

Hence 1{ }n H
u and *22 ( )

{ }Nn L R
u are bounded. By interpolation, { }nu is bounded in *( ), 2 22s NL s≤ ≤� . 

1813



 

Consequently, by (2.1) , there exists a constant 0 0C > such that 0( , )
N nG x u dx C≤∫� , hence 

1,4

4( )
4n n W

J u u Cθ
θ

≥ − , which implies 1,4

4

4 n W
u d Cθ

≤ + < ∞ . Consequently { }n E
u is bounded, a 

contradiction. This ompletes the proof of lemma2.3. 
Lemma 2.4 Let \{0}D E⊂ be a compact subset. Then there exists a 0R > such that 0Jθ <  on 

( ) \ (0)RD B+� ,where { }(0) : :R n E
B u E u R= ∈ < . 

Proof. Arguing by a contradiction, suppose that there exist equences{ }nu D⊂ and { }nt
+⊂ � such 

that ( ) 0n nJ t uθ ≥ and nt →+∞ as n →∞ .By the compactness of D , we may assume that 

nu u D→ ∈ and n E
u C≤ . Hence 

** 222(2 2)
14 *

( ) 10
22 N

n n
n n

n

J t u C t u dx
t

θ −≤ ≤ − → −∞∫� , a contradiction. 

This completes the proof of Lemma 2.4. 
Let S be the unit sphere in E . Define a mapping ( ) :m m S Mθ= → and a functional 

( ) : SθΨ = Ψ → � by ( ) um u t u= and ( ) ( ( ))u J m uθΨ = , where ut is as in Lemma 2.1. By Lemma 2.1, 
2.2 and 2.4, similar to Lemmas 3.6-3.8 in [4],we can prove the following Lemmas 2.5-2.7. 

Lemma 2.5 The mapping m is a homeomorphism between S and M , and the inverse of m  is given 

by 1( )
E

um u
u

− = . 

Lemma 2.6 (1) 1( , )C SΨ∈ � and for each u S∈ , one has ( ), ( ) ' ( ( )),
E

u z m u J m u zθ′Ψ =  for 
all ( )uz T S∈ , where ( )uT S is the tangent space of S at point u . 

(2) If{ }nu is a Palais-Smale sequence ofΨ , then{ ( )}nm u is a Palais-Smale sequence of Jθ . If 
{ }nu M⊂ is a bounded Palais-Smale sequence of Jθ , then 1{ ( )}nm u− is a Palais-Smale sequence 
ofΨ . 

(3) u is a critical point of Ψ if and only if ( )m u is a nontrivial critical point of Jθ . Moreover, the 
corresponding values of Ψ and Jθ coincide and inf inf

S M
JθΨ = .  (4) If Jθ is even, then so is Ψ . 

Lemma 2.7 The mapping 1m− defined in Lemma 2.5 is Lipschitz continuous. 
Lemma 2.8 ( )kc θ is a critical value of Ψ . 
Proof. If ( )kc θ is not a critical value ofΨ , then for any w S∈ , one has ( ) ( )kw c θΨ ≠ or ( ) 0w′Ψ ≠ . 

Hence there exists 0δ > such that { }*( ), : : ( ) ( ) , ( )
kC k E

N w S w c wθ δ θ δ δ′= ∈ Ψ − < Ψ < =∅ . 

Otherwise, there exists a sequence{ }nw S⊂ such that ( ) ( )n kw c θΨ → and *( ) 0n E
w′Ψ → . Set 

( )n nu m w= . Then, { }nu M⊂ is a ( )( )
kcPS θ sequence of Jθ . By Lemma 2.3 the sequence { }nu is 

bounded in E . Hence, up to a subsequence, one has weak
nu u→  in 1,4 ( )NW �  and ( )NH � . Notice 

that * 422
2

N
N

<
−

, one has nu u→ in ( )s N
locL �  for all *[2, 22 )s∈  and ( ) ( )nu x u x→ . . Na e x∈� .By 

weakly convergence, one has  2 2 22 (1)
N N N Nn n nu dx u udx u dx u dx o∇ ≥ ∇ ⋅∇ − ∇ = ∇ +∫ ∫ ∫ ∫� � � �

 

and    ( )1 ( ) ( ),n n no J u J u u uθ θ′ ′= − −  

[ ]

1,4 1

* *

4 2 2 2

2 2 22 2 22 2

2 ( ) ( )

2 ( ) ( ) ( )

( , ) ( , ) ( )

N

N N

N

n n n nW H

n n n n n

n n

C u u C u u u u u u u dx

u u u u u dx u u u u u u dx

g x u g x u u u dx

θ λ

λ − −

≥ − + − + − ⋅∇ ⋅∇ −

 + ∇ − ∇ ⋅ ⋅ − − − ⋅ −  

− − ⋅ −

∫

∫ ∫
∫

�

� �

�

 

where (1) 0no → as n →∞ . Hence, by H o lder inequality and the boundedness of{ }nu in E , one 
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has  
1,4 1

4 2
n nW H

C u u C u uθ − + − *1 22
(1) ( ( , ) ( , ) )

Nn n n no C u u g x u g x u u u dx≤ + − + + ⋅ −∫� .      (2.2)  

For any 0ε > , by 2 3( ), ( )g g and the boundedness of { }nu in E , there exist constants 0C > and 

0Cε > such that   *22
( ( , ) ( , ) )

N n n n nE
g x u g x u u u dx C u u C u uεε+ − ≤ − + −∫� .            (2.3)  

Combining (2.2) and (2.3) we know that for any 0ε > , there exist positive constantsC andCε such that 

1,4 1 *

4 2

22
(1)n n n n nW H E

C u u C u u o C u u C u uεθ ε− + − ≤ + − + − .                           (2.4)  

If *22nu u− does not go to 0 as n →∞ , then, by Lemma I.1 in [7], up to a subsequence, there 

exists 0 0ε > such that
1

2
0( )

sup
N

nB yy
u u dx ε

∈
− ≥∫

�

.Hence there exists N
ny ∈�  such that 

1 1

2 2
0( ) ( )

max
N

n
n nB y B yy

u u dx u u dx ε
∈

− = − ≥∫ ∫
�

. By the assumptions of periodicity, we can assume{ }ny is 

bounded in N� . Consequently, there exists a bounded domain NΩ⊂ � such that 

1

2 2
0( )n

n nB y
u u dx u u dx ε

Ω
− ≥ − ≥∫ ∫ , a contradiction. Hence *22

0nu u− → as n →∞ .  Consequently, 

by (2.7) , nu u→ in E , and hence u is a critical point of Jθ and ( ) ( )kJ u cθ θ= . Moreover, by Lemma 
2.7 we know that u M∈ , and hence Lemma 2.5 implies 1

( ): ( )
kcw m u K θ

−= ∈ , a contradiction. This 
shows ( )kcN θ = ∅ .Therefore, by Remark II.3.12 in [13], there exists 0 0ε > such that for any 

00 ε ε ε< < ≤ , there exists a continuous 1-parameter family of homeomorphisms ( ),tη ⋅  of S , 

0 t≤ < ∞ , with the properties: 0(1 ) ( ),w t wη = , if 0t = , or ( ) 0w′Ψ = , or ( ) ( )kw c θ εΨ − ≥ ; 
0(2 ) ( ( , ))w tηΨ is non-increasing in t  for any w S∈ ;  0(3 ) ( ) ( )( ,1)k kc cθ ε θ εη + −Ψ ⊂ Ψ ; 
0(4 ) ( , ) ( , ) ( , )s t s tη η η⋅ ⋅ = ⋅ +  for all , 0s t ≥ ;      0(5 ) ( , )w tη is odd in w for 0t ≥ . 
Moreover, by ( ),kcN θ δ = ∅we know that there exists 1 00 ε ε< < such that 1

1

( )
( )

k

k

c
c Kθ ε

θ ε
+
−Ψ =∅1 .For each 

1( )kcw θ ε+∈Ψ , by the property 0(3 ) of η we know that 1( ( ,1)) ( )kw cη θ εΨ ≤ − . Let ( )e e w= be the 
infimum of the time for which 1( ( , )) ( )kw t cη θ εΨ ≤ − . It is easy to see that 1( ): [0, )kce θ e+Ψ → +∞  is a 
continuous mapping. SinceΨ is even, so is e . Define a mapping 1 1( ) ( ): k kc ch θ ε θ ε+ −Ψ →Ψ  by 

( ) : ( , ( ))h w w e wh= .Then h is odd and continuous. It follows from the mapping property of the genus 
and the definition of ( )kc θ that 1 1( ) ( )( ) ( ) 1k kc ck kθ ε θ εγ γ+ −≤ Ψ ≤ Ψ ≤ −  a contradiction. This completes 
the proof of Lemma 2.8. 

Lemma 2.9  Let { } (0,1]nθ ⊂  be such that 0nθ → . Let  nu E∈  be a critical point of 
n

Jθ with 
( )

n nJ u cθ ≤ for some constant c independent of n . Then, up to a subsequence, we have 
weak

nu u→ in 1( )NH � , weak
n nu u u u∇ → ∇  in 2 ( )NL � , 1( ) ( )N Nu H L∞∈ � 1 �  is a critical point of 

J  and ( ) liminf ( )
n nn

J u J uθ→∞
≤ . 

Proof. As the proof of Lemma 2.3 we can prove that the sequences 1{ }n H
u  *22

{ }nu  
2 2{ }

N n nu u dx∇∫� { ( , ) }
N nG x u dx∫�  and 1,4

4{ }n n W
uθ are bounded. Hence, by the Sobolev embedding 

and the interpolation, up to a subsequence, one has weak
nu u→ in 1( )NH � , nu u→  in ( )s N

locL �  for 
*[2, 22 )s∈ , ( ) ( ) . . N

nu x u x a e x→ ∈� . Up to a subsequence, lim 0
N

s
nn

u u dx
→∞

− =∫�  *[2, 22 )s∀ ∈ . 

By using Moser iteration we can prove ( )Nu L∞∈ � . Hence, by approximation we obtain 
( ), 0J u ϕ′ = , 1( ) ( )N NH Lϕ ∞∀ ∈ � 1 � . This shows that u is a critical point of J . 
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Moreover, one has      
*2 2 22

*

1 1 1liminf ( ) ( ) ( )
4 4 4 22N N Nn nn

aJ u u dx V x u dx u dxθ→∞
≥ ∇ + + −∫ ∫ ∫� � �

 

1 1[ ( , ) ( , )] ( ) ( ), ( )
4 4N

ug x u G x u dx J u J u u J u′+ − = − =∫� . 

This completes the proof. 
Proof of Theorem 1.1 Take a sequence{ } (0,1)nθ ⊂ with 0nθ ↓ . Then for any fixed k∈� , by 

Lemma 2.9 we know that there exists a sequence{ ( ) : 1, 2, }kv n n = ⋅⋅⋅ of critical points for Ψ  such 
that ( ( )) ( )k k nv n c θΨ = . Hence, for each n∈� , Lemma 2.6 implies that { ( ) : ( ( ))}k ku n m v n= is a 
nontrivial critical point of 

n
Jθ and ( ( )) ( )

n k k nJ u n cθ θ= . Notice that 1 ( ) (1)k n kc cδ θ≤ ≤ . Up to a 

subsequence, we have, as n →∞ , ( )k kv n v→  ( )( )k k ku n u m v→ = in 1( )NH � , ( ) ( )k k k ku n u n u u∇ → ∇  

in 2 ( )NL � , 4 4( ( ) ( ) ) 0
Nn k ku n u n dxθ ∇ + →∫� , ( ( )) ( ) :

n k k kJ u n J u cθ → = and 1( ) ( )N N
ku H L∞∈ � 1 �  

is a nontrivial critical point of J . By Lemma 2.6(3), kv is a critical point of Ψ . 
    Now, set 1:

kk cK K∞
==  . Choose a subset F of K such that F F= − and each orbit ( )O u K⊂  has a 

unique representative in F . As proof of Lemma 2.11 in [15] we can prove that F is an infinite set. 
Combining this with Lammas 2.6(3), we deduce Theorem 1.1. 
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