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Abstract 

This paper presents a system - Photo 
Traveler - for exploring large photo col-
lections of a scene with a visceral 3D 
sense. Based on 3d-reconstruction, Photo 
Traveler managed to rearrange those pho-
tos in 3D scene, enabling the user to ex-
plore photos as if looking through the real 
cameras, and move between photos as if 
strolling the scene. 

Photo Traveler lays emphasis on high-
density reconstruction of scene geometry 
at low cost of time. Towards this goal, a 
novel approach is proposed to obtaining 
reliable relationship between two images. 

Keywords: photo exploring, image-based 
modeling, quasi-dense matching, struc-
ture from motion, Internet imagery 

1. Introduction 

Digital photography together with Inter-
net enables the largest sharing database of 
image, and provides a great opportunity 
for innovational applications. Snavely et 
al. [1] presented a 3D photo browsing 
system, which was the predecessor of 
Microsoft's Photosynth. Vergauwen et al. 
[2] developed a web-based reconstruction 
service for cultural heritage applications. 
A new branch of computer vision on In-
ternet imagery is also developing [3]. 
Photo Traveler is mostly inspired by Pho-
tosynth but devoted to practical problems 
discussed as follows: 

 Unordered photos: an image se-
quence guarantees small baseline in 
successive frames and large base-
line in distant frames, which are 
unknown to an unordered set. So 
we believe reliable estimation of 
pairwise motion is important, and 
introduce a new method consisting 
of improved normalization and ro-
bust estimation with feedback. 

 High-density scene geometry: last 
two decades, the standard sparse 
structure from motion (SfM) ap-
proaches maturely developed [4, 5], 
but barely enough to representing 
the scene. On the other hand, dense 
matching is generally ill posed, and 
sometimes unnecessary in terms of 
time efficiency [6]. To overcome 
the insufficient sparse matching 
and fragile dense matching, we im-
pose quasi-dense approach [7] to 
densify matching points. 

 Low cost of time: as referred in [3], 
Photosynth spent days to handle a 
thousand photos. However, Photo 
Traveler saved a lot time by selec-
tive match propagation and batch 
recovery of cameras in SfM. 

 
The paper is organized as follows: Sec-

tion 2 presents our approach to quick re-
construction of cameras and quasi-dense 
geometry of the scene. Section 3 shows 
the exploring interface and techniques. 
Results and conclusion are given in Sec-
tion 4. 
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2. Reconstruction of Camera Positions 
and Quasi-Dense Geometry  

Starting from a collection of unordered 
photos of a scene, we are aiming at re-
constructing quasi-dense geometry of the 
scene, and camera position of each photo. 
Towards this goal, our algorithm consists 
of five steps, as depicted in Fig.1. Each of 
these steps is described in the subsections. 

 

 
Fig. 1: Flow chart of 3D reconstruction of 
camera positions and quasi-dense geometry 
 
2.1. Putative feature matching 

The reconstruction starts with detecting 
features in each image using the SIFT de-
tector introduced by D. Lowe [8]. Since 
each image could potentially match every 
other one in unordered datasets, we 
search matches between every two im-
ages. Once features have been extracted, 
we perform feature matching between 
each image pair (I1, I2), using the ap-
proximate nearest neighbours (ANN) kd-
tree package of Arya et al. [9].  The spe-
cific algorithm is described in Table 1. 
 
 
 
 

 
Table 1:  Putative feature matching algorithm 
 

Input:  each image pair (I1, I2) 
set rejection ratio rt1 , rt2 
for each feature ft ∈ I1: 

find 5 NN ft1-ft5 in I2 with distance d1-d5 
set eout=d5 (consider ft5 as outlier) 
for fti=1…4 : 

if (di /dout<rt1) 
find 2 NN fti1, fti2 in I1with distance di1, di2 

if (di1/di2 < rt2 & fti1= ft) 
accept < ft, fti > 

Output:  putative matches 

 
2.2. Approximate self-calibration  

Different from standard reconstruction 
approach, where camera is calibrated af-
ter projective reconstruction, we estimate 
an approximate intrinsic camera matrix in 
this step, taking advantage of the Ex-
changeable Image File Format (EXIF) 
metadata in each digital photo. Therefore, 
the approximate calibration result could 
be used in the normalization of image co-
ordinates. 

The intrinsic parameters of camera can 
be represented by a matrix: 

 

 

0

0

s u

0 v

0 0 1

f
dx

fK dy

é ù
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê úê úë û

 (1) 

 
Where (u0, v0) is the principle point, s is 

the distortion factor, f represent focal 
length in physical measurement, (such as 
mm), dx, dy implicate the quantification 
scale that is one pixel represents a rectan-
gle region with width of dx and height of 
dy in physical measurement. 

Present imaging systems could perform 
very close to the ideal pinhole camera 
model. It is reasonable to ignore the dis-
tortion factor s and regard the pixel center 
as the principle point. On the other hand, 
the EXIF data in image file records much 
information about the camera setting, 

Structure&Motion 
Recovery 

Pairwise Relating 

Pairwise image Putative 
Feature Matching

Self-calibration 

Pixel plane to physical plane

RANSAC with feedback 

Each image 

Selective 
Quasi-Dense

Matching 

All images 

Quasi-Dense Geometry 
 

Camera Positions 

Proceedings of the 11th Joint Conference on Information Sciences (2008) 
                                          Published by Atlantis Press 
                                                    © the authors 
                                                                2



such as the focal length a(mm), the size of 
image (Wimg , Himg), the camera maker, and 
model type. Given the camera maker and 
model type, it is easy to get the size of 
sensor (Wccd , Hccd) according to industry 
standard. Thus, we can compute an ap-
proximate intrinsic camera matrix: 
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2.3. Pairwise relating 

From pixel plane to physical plane: 
Hartley [10] pointed out it is important to 
normalize the image coordinates to elim-
inate the difference in order of magnitude. 
While recording with a digital camera, 
the object is first mapped to the film 
plane, and then re-projected to the pixel 
plane for digitization. For simplicity, the 
object is often directly projected into im-
age plane, ignoring the differences in im-
aging systems, which result in the differ-
ence in order of magnitude. 

Unlike standard normalization, we 
transform images from pixel image plane 
to physical film plane consistent with the 
measurement of focal length. The trans-
form from physical point (x, y) to pixel 
point (u, v) can be deduced from Eq. (1), 
(2) as Eq. (3): 
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RANSAC with feedback: Two im-
ages with non-coincident camera centers 
can be constrained with epipolar geome-
try expressed as a fundamental matrix F; 
two images with the same camera center 
can be mapped by a homographic matrix 
H from one to the other [11]. Therefore, 
before using RANSAC [12] for param-
eterized model estimation, we have to 
evaluate which of the two models - F or 
H - is best suited to explain the data. 
Different from analyzing the dataset itself 
[13], we present an improved RANSAC 
with feedback. 

We first assume they comply with epi-
polar geometry and set F as default mod-
el, which will be tested by the result of 
singular value decomposition (SVD) of 
essential matrix. If the SVD fails, we re-
ject the pair for not fitting 3D reconstruc-
tion. Considering the mismatch, we 
brought in tolerated error during positive 
depth constrain. The whole algorithm is 
described in Table 2. 
 
Table 2:  Pairwise relating  

 
Input:  

putative matches PUTA{<p1
 i

,p2
i>; i=1,…,n} 

        approximate intrinsic camera matrix K1,K2 

transform  p i ∈ PUTA to film plane  
set model   (fundamental matrix F ) 
RANSAC(model, matches M); 
compute  essential  matrix  T

2 1E=K FK  

projection matrix P[4]=SVD decomposition (E) 
break_times1=0, break_times2=0; 
for  j=1,…,4 

       for all   mi  (x i, y i) ∈ M 
compute depth Z1

 (P[j] ), Z2
 ( P[j]) 

            if(!( Z 1
i>0 & Z 2 

i
 >0))  

break_times1++; break; 
if( break_times1= =4) 

       set tolerated error T 
       for j=1,…,4 

for all   mi  (x i, y i) ∈ M 
compute depth Z1

 (P[j] ), Z2
 ( P[j]) 

                    if( Z1
 i<0 || Z2

i<0 || out of T )  
     break_times2++; break; 

        if(break_times2= =4) 
             reject all matches           

Output: inliers and F , or rejection of PUTA 
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2.4. Selective quasi-dense match  

To densify the matching points, we apply 
the quasi-dense approach similar to that 
of Lhuillier and Quan [7], but we only 
choose the pairs with ‘little’ varied intrin-
sic camera and ‘moderate wide’ baseline. 
As we know, small baseline between two 
views indicates good matches but ill-
posed 3d-reconstruction. The quasi-dense 
approach we imposed is proved effective 
in baseline extension for good matches. 
However, it only works for constant or 
little-varied intrinsic camera. When in-
trinsic camera varied a lot, it is likely to 
lead to the result even worse than sparse 
matching. Moreover, due to the time-
consuming procedure, it is important to 
appropriately selecting the propagation 
pairs. 

Fig.2 gives an instance of the quasi-
dense matching between two views with 
wide-baseline and little-varied intrinsic 
camera. The experimental data are given 
in Table.3.  

Fig.3 shows the rejection cases with 
too small baseline or degenerated con-
figurations, and their corresponding ex-
perimental data can be found in Table.4. 
 
Table.3: Selective quasi-dense matching data 

 
Self-calibration 

I1 I2 
Sparse match

3228.5 0 640
0 3266.8 480
0 0 1

 
 
    

3835 0 640
0 3880.4 480
0 0 1

 
 
    

73 

SVD 

Rotation Translation 
Quasi-dense 

match 

0.993 0.008 -0.117
0.02 0.994 0.106

0.115 0.108 0.987

 
  
    

0.78
-0.012
-0.199

 
 
    

855 

 
 

I1 

                                     I2 

Quasi-dense matching points in I1 

Quasi-dense matching points in I2 

 
Fig.2:  Selective quasi-dense matching with 
wide baseline & little-varied intrinsic camera 
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Fig.3:  Rejected samples in selective quasi-
dense matching, where (a) has good quasi-
dense matching result but failed in SVD, (b) 
and (c) are degenerated cases when intrinsic 
camera varied a lot. 
 

 
Table.4:  Experimental data of rejected sam-
ples in selective quasi-dense matching 

Fig.3 
Self-

calibration 
Sparse 
match

SVD 
Quasi- 
dense 
match 

Left
1248.6 0 640

0 1263.4 480
0 0 1

 
 
  

(a)

Right
1498.3 0 640

0 1516.1 480
0 0 1

 
 
  

259 failure 1062 

Left
2479.4 0 640

0 2508.7 480
0 0 1

 
 
  

(b)

Right
4994.4 0 640

0 5053.6 480
0 0 1

 
 
  

116 success 
42 

fail-
ure 

Left
2943.1 0 640

0 2798 480
0 0 1

 
 
  

(c)

Right
1498.3 0 640

0 1516.1 480
0 0 1

 
 
  

44 failure 
3 

fail-
ure 

 

2.5.  Structure and motion recovery 

After finding all matching image pairs, 
we connect the matches into tracks. Then 
we perform the SfM procedure similar to 
that of Snavely et al. [14], but apply batch 
recovery of camera in terms of efficiency. 

Firstly, we select two views with both 
sufficient matches and large baseline for 
initial reconstruction. Next, we choose at 
most five cameras; each of them observes 
more reconstructed tracks than any other 
does. We add these cameras to the opti-
mization set of camera at one time and 
compute their projection matrix. Then, 
we add tracks observed by the new cam-
eras into the optimization set of 3d-point, 
if another recovered camera exists in the 
track. This procedure is repeated until no 
remaining camera observes any recon-
structed 3d-point. The sparse bundle ad-
justment algorithm [15] is used each it-
eration to find the minimum error 
solution.  

 
 

  

   

 
(a) Rejected sample with small baseline  

& intrinsic  camera varied a little 

  

  

 
(b) Rejected sample with small baseline  

& intrinsic camera varied a lot 

  

  

 
(c) Rejected sample with wide baseline  

&  intrinsic camera varied a lot 
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3. Photo Exploration in 3D 

Knowing the position of each camera, we 
can register each photo with a common 
3D coordinate frame, which gives the us-
er a strong sense of spatial relationship. 
In addition, simple morphing techniques 
can provide smooth transitions as if 
strolling between photos. 

3.1. Model navigation 

Fig. 4 is a downside looking of the main 
scene of the Gate of Heavenly Peace in 
China represented as a quasi-dense point 
model. The cameras are rendered as frus-
tums. If the user strolls towards a camera, 
the virtual camera will smoothly move 
into the photo view, while the neighbors 
will be rendered as semi-transparent faces. 

 

 
Fig. 4: Scene model and cameras 
 

3.2. Photo exploration 

When the user visits a photo, we search 
its neighbors of virtual camera. As shown 
in Fig.5, we render the results as a visual-
link graph of thumbnails by the distance 
of relevance, which could give a strong 
sense of spatial relationship. When the 
user moves from one photo to another, 
we use simply morphing techniques [1] to 
generate smooth transitions between rela-
tive cameras, providing a strong sense of 
spatial relationships. Therefore, the user 
can ‘travel’ through those photos with a 
visceral 3D sense.  

 

 
Fig.5: Photo exploring interface 
 

4. Results and Conclusion 

We have applied our system to exploring 
the Gate of Heavenly Peace of China 
from a personal collection of 128 photo-
graphs. The reconstructing time was 
about 85 minutes, and 64 photos were 
ultimately registered. During the pairwise 
relating, 36 matching pairs of image are 
rejected by epipolar geometry constrain, 
18 pairs were selected for quasi-dense 
matching. The recovered camera posi-
tions were proved trustworthy in repre-
sented 3D scene, by view morphing in 
exploration interaction. 

Besides rebuilding high-density scene 
geometry, our reconstruction method has 
improved a lot in terms of time and reli-
ability. However, still existing several 
limitations that we would like to address 
in the future. The self-calibration method 
is highly dependent on the EXIF data of 
photographs, which may be not trusty as 
it can be removed or modified. It is hard 
to define ‘little-varied’ intrinsic camera 
and ‘moderate wide’ baseline, which may 
depend on the attributes of dataset. More 
experiments to various scenes are needy 
for robust evaluation of algorithm. Fur-
thermore, we are planning to extend our 
system to exploring large scene by regis-
tering each small scene to a geo-
referenced frame such as Google Earth. 
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