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Abstract  

Motivated from the financial literature 
about the intraday trading behavior, we 
use the hierarchical self-organizing maps 
to detect the price patterns during three 
trading periods, namely, the opening, the 
middle, and the close of the market. It is 
found from the empirical study that the 
three trading periods exhibit their unique 
characteristic. Furthermore, the intraday 
patterns in the opening and in the close 
are related. 

Keywords: Intraday Data, Chart Analysis, 
Hierarchical SOMs 

1. Introduction 

During the trading period, any informa-
tion about the market would be disclosed 
via trading activity. The trading activity is 
more prominent during the opening and 
the close of the market. It is found from 
the market microstructure literature that 
the trading activity is more frequent dur-
ing the opening and close trading periods, 
results in the U-shape pattern of the intra-
day volatility structure (Wood, McInish, 
and Ord, 1985; Harris, 1986; Jain and Joh, 
1988; McInish and Wood, 1990; Chan, 
Chan, and Karolyi, 1991).  

From a practical viewpoint, profes-
sional traders like to trade at the opening 
in order to react the new information and 
modify their positions before the market 
closed in order to reduce the overnight 
risk. During the middle trading period, 
they examine the market and collect any 

useful information. On the other hand, the 
market situations at the opening and at 
the close are usually in the headline of 
everyday financial newspaper.  

Based on the above analysis, the un-
balanced trading activity and different 
trading behavior might result in different 
price behaviors in the opening, the middle, 
and the close of the market. In this paper, 
we would like to study the intraday price 
patterns detected from different trading 
periods and see if these patterns exhibit 
their unique characteristic. The method 
we used to detect the intraday patterns is 
the trajectory-domain model proposed by 
Chen and He (2003) and Chen and Tsao 
(2003).  

Chen and He (2003) are the first to use 
self-orginazing maps (SOMs) to search 
for and identify interday price patterns. In 
their model, a geometric or trajectory pat-
tern of the price series is considered to be 
a feature. Such a model is referred to as 
the trajectory-domain model. Chen and 
Tsao (2003) applied the same architecture 
and conduct a more rigorous statistical 
analysis of the discovered patterns. 

The SOMs proposed by Kohonen 
(1982) are a special class of artificial neu-
ral networks. The SOMs are used for un-
supervised learning to achieve auto clas-
sification, data segmentation or vector 
quantification. Unlike the supervised arti-
ficial neural networks, SOMs do not re-
quire the users to know in advance the 
exact objects that they are looking for. 
This convenience is particularly impor-
tant when one can only effectively recog-
nize some patterns by visual inspection 
rather than based on mathematical de-
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scriptions. It is in this sense that the tra-
jectory-domain model employs the SOMs 
as a tool to build the patterns. 
    This study modifies the trajectory-
domain model by using a variant of 
SOMs, the hierarchical SOMs, due to the 
reason that one must subjectively decides 
the number of patterns (the map size in 
SOM) when implementing the trajectory-
domain model. However, the number of 
patterns might differ from different mar-
kets and should be decided by the market 
itself. The advantages of the hierarchical 
SOMs are twofold. The first is that the 
map size and the map structure are auto-
matically determined. The second is that 
the detected patterns can be presented on 
a hierarchical structure. 

The rest of this paper is organized as 
follows. Section 2 gives a brief introduc-
tion to the SOMs and the hierarchical 
SOMs proposed in this study. The em-
pirical analysis is presented in Section 3. 
We conclude the paper in Section 4. 

2. Methodologies 

2.1. Self-Organizing Maps 

The SOMs can be understood in different 
disciplines: the SOM training algorithm 
resembles the classical vector quantiza-
tion (in signal processing), SOM is one of 
the unsupervised learning algorithms (in 
pattern recognition), and the SOM can be 
used for data clustering (in statistical 
multivariate analysis). In fact, the training 
algorithm of SOMs is unsophisticated and 
intuitive. After training, the SOMs on the 
one hand compress the data in an ordered 
manner, and on the other hand preserve 
the topology structure of the distribution 
of the data. 

Consider a network (map) with k neu-
rons and an input data set X with p vec-
tors. In the training process, for an input 
vector x  X, the weights of the winning 

neuron and its close neighbors are up-
dated according to (1), 
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where vj(n) is the weight vector of the jth 
neuron at the nth iteration, πj,i(x)(n) is the 
neighborhood function (to be defined be-
low) of node indices j and i(x), 
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and η(n) is the learning rate at iteration n. 
The typical neighborhood function is the 
Gaussian form, 
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where dj,i(x) is the distance between node 
units j and i(x) on the map grid, and σ(n) 
is some suitably chosen, monotonically 
decreasing function of iteration times n. 
Here, the effective width σ decays with n 
linearly according to (4). 
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where σ0 and σ1 are constants (σ0 > σ1) 
and N is the total number of epochs (to be 
defined below). 

Some measures are frequently used for 
the quality of the map. One of the most 
commonly used measures is the average 
quantization error (aqe) which is simply 
the average distance from each input vec-
tor to its best matching neuron, i.e. 
 

 
p

cqe
aqe   (5) 

 
where cqe is the cumulative quantization 
error which is defined as  
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The cqe can be regarded as the variation 
of the input vectors due to clustering. The 
lower the cqe (aqe) is, the higher degree 
of the clustering phenomenon exists in 
the data. 
2.2. Hierarchical Self-Organizing 

Maps 

We have introduced the basic training al-
gorithms for the SOMs in Section2.1. It 
can be denoted as the basic SOM. In the 
literature, however, there are enormous 
variants of the SOMs developed in order 
to increase the efficiency, convergence, 
elasticity, and the capability to resolve 
some specific problems. For example, 
Dittenbach, Merkl, and Rauber (2000) 
propose the Growing Hierarchical Self-
Organizing Map (GHSOM). The 
GHSOM on the one hand is a data-driven 
architecture and on the other hand gives 
an intuitive representation of hierarchical 
relations on the data. 

In this study, we propose alterative 
SOMs for the intraday patterns discovery. 
The method is based on the hierarchical 
structure of the maps. We first use basic 
SOMs to obtain a map with the best map 
size (number of neurons) and the best 
structure of the map. We denote the map 
as the first-layer map. We then determine 
which neuron on the first layer should be 
further partitioned. If some neuron satis-
fies the pre-specified criterion, all input 
vectors belonging to that neuron will be 
clustered again by using the basic SOM. 
We then obtain the second-layer map. 
This procedure is continued until all of 
the neurons are not judged as the one 
which needs to be further clustered. 

There are two issues needing to be 
clarified. The first is how to determine 
the better map size and the structure of 
the map. The second is how to determine 
which neuron should be further parti-
tioned. For the first issue we notice that 

there is an inverse relationship between 
the number of neuron and the quality of 
the map. It is easy to see that when the 
number of neurons (k) is larger than or 
equals to the number of input vectors (p), 
the average quantization error (aqe) 
reaches its smallest level and would be 
zero. This is not desirable because the 
over-fitting phenomena may occur. Con-
sider the other extreme case where the 
number of neurons is one. Then the aver-
age quantization error (aqe) is largest and 
would approach the variance of the dis-
tance between the input vectors and their 
midpoint. This is also not in demand 
since patterns, if there is any, would be 
averaged out in this case. A better choice 
of the map size would be the one that bal-
ances between the explanation and the 
exploitation of the model. In this study, 
we use the following criterion (C1), which 
is similar to the famous Akaike informa-
tion criterion (Akaike, 1973), to deter-
mine the number of neurons, 
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where  is a positive real number and is 
used as the penalty multiplier which 
equalizes the importance between the aqe 
and the map size. The map of size k with 
the lowest C1(k) is regarded as the best 
map size in this study. 
    Given on a map size, however, it might 
have several different map structures. For 
example, a two-dimension map with 9 
neurons has three different structures, 
namely, the 19 map, the 91 map, and 
the 33 map, respectively. In this study, 
we consider all possible structures for 
each map size and the final choice to rep-
resent that size is the one with the small-
est aqe.  
    The second issue concerns with the ex-
pansion of the map. It is intuitive to ex-
pand a neuron if it has a relative high de-
gree of inner inconsistency, i.e. high cqe.  
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Fig. 1: The structure of the hierarchical SOM. 
 
Let cqe0 denote cumulative quantization 
error when only one neuron is used, 
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and cqel,j denotes cumulative quantization 
error for neuron j on layer l, 
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It can be seen that cqe0 is always not 

smaller than the summation of all the 
cqel,j which is on the end-layer maps. 
Then the cqe0 can be regarded as the total 
variation of the input vectors and the 
cqel,j can be regarded as the partial varia-
tion due to clustering. The relative varia-
tion (C2) of neuron u on layer l is defined 
as  
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A neuron u is determined to be further 
partitioned if C2(u) is larger than a pre-
specified level (). Fig. 1 is the structure 
of the hierarchical SOM.  
    The hierarchical SOM we propose in 
this study is similar to the GHSOM (Dit-
tenbach, Merkl, and Rauber, 2000). How-
ever, from the experiment results not 
shown here we find GHSOM generates 
too many or too small patterns when ap-
plying to the intraday price data no matter 

how we fine-tune the parameters in 
GHSOM. 

3. Empirical Study 

We apply the hierarchical SOM to two 
financial markets, namely, the Taiwan 
Stock Exchange Capitalization Weighted 
Stock Index (TAIEX) and the Taiwan Fu-
tures Exchange (TAIFEX). The sample 
period covers from 1/2/2001 to 2/27/2007. 
The 1-minute data is collected in order to 
discover the intraday patterns. During a 
trading day, the first, the middle, and the 
last 30 minutes data are used as the sam-
ple to examine the opening, the middle 
and the close market patterns, respec-
tively. We then implement six (2 markets 
and 3 intraday trading periods) experi-
ments in this study.  

For each experiment, the basic SOM 
combined with the criterion (7) is used to 
obtain a first-layer map. The penalty mul-
tiplier  in (7) is set to be 40 for the first 
layer construction. The first-layer results 
for the four experiments are different. We 
detect 18, 18, and 91 map structures 
for the opening, the middle, and the close 
of the TAIEX, respectively. In addition, 
we detect 51, 51, and 32 map struc-
tures for the opening, the middle, and the 
close of the TAIFEX, respectively. The 
basic SOM combined with the criterion 
(7) is used again for the neurons whose 
C2 is lower than the threshold value . 
The value  is set to be 3.5% in this study. 
It is found from the empirical study that 
almost all of the neurons on the first layer 
need to be extended further. One excep-
tion is the forth neuron on the map of the 
close of the TAIEX.  

It should be noticed that the penalty 
multiplier  for the second layer con-
struction must be lower than that for the 
first layer in order to allowing for finer 
clustering in the second layer. The pen-
alty multiplier  is set to be 12 for the 
second layer construction in this study.  

if C2(1, u) >  

if C2(2, u) >  
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Table 1:  Map qualities on different trading 
periods. 
  TAIEX   

  Opening map Middle map Close map

Opening data 0.7036 0.8763 0.8113

Middle data 0.8053 0.7907 0.7592

Close data 0.8613 0.8670 0.7028

  TAIFEX 

  Opening map Middle map Close map

Opening data 0.8721 0.9247 0.9731

Middle data 1.5467 0.8812 0.9638

Close data 1.5722 0.8981 0.8106

 
After the construction of the second 

layer maps, none of the second-layer neu-
ron needs to be further partitioned. The 
four experiments stop at the second layer. 
Fig. 2 is the first-layer map of the TAIEX 
opening. Fig. 3 is the second-layer map of 
the TAIEX opening. Due to the paper 
size we only present the maps for the 
opening of TAIEX. Other results are 
available from the authors upon request. 
    Table 1 represents the map qualities in 
different markets and trading periods. 
Take the TAIEX as an example, the aqe 
for the opening, the middle, and the close 
of the market are 0.7036, 0.7907, and 
0.7028, respectively. Given on the same 
setting of the experiments, it tends to 
have a higher quality map for the opening 
and the close of the market than that for 
the middle, which confirms the hypothe-
sis of more information contained in the 
opening and close trading periods. Based 
on the higher quality maps in TAIEX 
than those in TAIFEX, the patterns in the 
spot market seem to be more apparent 
than those in the future market.  

We further study the uniqueness of the 
patterns in different trading periods by 
measuring the map quality for one trading 
period, but the map is trained using an-
other trading period. What we do is firstly 
apply the trajectory-domain model to one 
specific trading period and obtain the pat-
terns. We then apply this trained trajec-

tory-domain model to another trading pe-
riod and evaluate the performance of the 
model. If the two series have similar pat-
terns, it is expected that the model will 
have a low aqe even if the model is bor-
rowed from the other period.  

Table 1 also presents the results. Take 
the TAIEX as an example, the qualities of 
the opening map in the middle and close 
trading period are 0.8053 and 0.8613, re-
spectively. It is trivial to find that each 
map is most successfully applied to the 
trading period which is used to train the 
map. We therefore are interested in the 
one which has the lowest aqe. The gen-
eral finding from Table 1 is that the least 
trading period for the opening map is the 
close. The least trading period for the 
close map is the opening. This finding 
suggests that there is a distinct price be-
havior between the opening and the close 
of the market. 

From the above analysis, we have evi-
dence to show that the intraday price pat-
tern is quite different between the open-
ing and the close of the market. We then 
study if there is any relationship between 
the two successive trading periods. This 
is motivated by the fact that the atmos-
phere caused by an extreme event usually 
envelops the market all of the day. The 
investors might take one specific action 
in the opening and one another action in 
the close under such environment, which 
results in a relationship between the 
opening pattern and the close pattern. If 
no information arrives during a day, only 
liquidity or noise traders are in the market. 
Their trading behaviors might also reflect 
some specific price pattern. On the other 
hand, the economic of Taiwan largely re-
lies on export. Other stock markets condi-
tion might influence Taiwan. Due to the 
time differences between different stock 
markets, the market closes of other coun-
tries might affect Taiwan opening. There-
fore, the investors would take actions at 
the opening based on both the closes of  
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Table 2:  Pearson 2 test of the trading periods. 
  TAIEX   

  Test Stats. df p-value

Opening-to-Close 75.18  56  0.04**

Close-to-Opening 69.68  56 0.10*

  TAIFEX 

  Test Stats. df p-value

Opening-to-Close 13.24  20 0.87 

Close-to-Opening 22.68  20 0.30 

‘df’ denotes the degree of freedom of the test. 
‘*’ denotes the significance under 10% level. 
‘**’ denotes the significance under 5% level. 

 
other markets and the action they took 
last day. 

We first study if one day’s opening and 
its following close are related. Under the 
trajectory-domain model considered in 
this study, one day’s opening and its 
close are related if the closed pattern 
which follows some specific open pattern 
is not purely arbitrary. We then study if 
one day’s close pattern causes next day’s 
opening pattern. The two alternative hy-
potheses we face are 
H11: The opening pattern and the follow-

ing close pattern are not independ-
ent. 

H12: The close pattern and the successive 
overnight opening pattern are not 
independent. 

The two hypotheses can be tested by us-
ing the Pearson 2 test. Table 2 is the re-
sult.  
    It is found from Table 2 that neither the 
intraday opening-to-close relationship nor 
the overnight close-to-opening relation-
ship is significant in the TAIFEX. The 
TAIEX, on the other hand, shows some 
dependence on both the intraday opening-
to-close relationship and the overnight 
close-to-opening relationship. While the 
TAIEX is a market index which reflects 
the overall market situation and can not 
be traded directly, the TAIFEX is a trad-
able market and the market involves 
many individual and institution investors 
which trade the futures in order to hedge 

their positions and make any arbitrage 
opportunity. The information in the 
TAIFEX market could easier be discov-
ered and understood by the market. 
Therefore, the TAIFEX would more effi-
ciently reflect the information, which re-
sults in that the price patterns are inde-
pendent between the two trading periods. 

4. Conclusion 

This study contributes to the literature via 
two viewpoints. First, we modified the 
trajectory-domain model (Chen and He, 
2003; Chen and Tsao, 2003) by proposing 
the hierarchical SOMs. The method can 
not only determine the map size and map 
structure automatically, but also obtain a 
map based on a hierarchical structure. 
Second, we apply the modified trajectory-
domain model to TAIEX and TAIFEX in 
order to detect the intraday patterns dur-
ing the opening, the middle, and the close 
of the market. It is found that the three 
trading periods exhibit their unique char-
acteristic. Furthermore, the intraday pat-
terns in the opening and in the close are 
related. The future research will focus on 
how the patterns in different trading peri-
ods reveal trading signals. 
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Fig. 3: The second-layer map of the TAIEX 
opening. 
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