

Encrypted Searching with Adaptive Symmetric
Searchable Encryption Security in Cloud
Storage
Mingchu Li1, a, Wei Jia2, b, Cheng Guo*3, c, Lieran Zhang4, d

1 School of Software Technology, Dalian University of Technology,

Dalian, 116620, China

2 School of Software Technology, Dalian University of Technology,

Dalian, 116620, China

3 School of Software Technology, Dalian University of Technology,

Dalian, 116620, China

4 Department of Maintenance, State Grid Liaoning Liaoyang Electric

Power Supply Company, Liaoyang, 111099, China

amingchul@dlut.edu.cn, bjiawei19891011@163.com, *cguocheng@dlut.e

du.cn, dzhanglieran_sg@163.com

Abstract.

The insecurity of cloud storage is notorious, it is difficult to both maintain
privacy of client’s data while still providing the ability to retrieval useful
information. In the area of searchable encryption, many previous works
presented their constructions based on non-adaptive security definition raised by
R.Curtmola. In this paper, we propose an efficient scheme that is secure against
more sophisticated server based on adaptive security definition. Furthermore, we
combine some components of currently open-source search engine with our
scheme to complete a prototype and provide results from experiments on a
large-scale dataset to prove the availability and efficiency of our scheme.

Keywords: Cryptographic Cloud Storage; Searchable Encryption; Adaptive
Security

International Symposium on Computers & Informatics (ISCI 2015)

© 2015. The authors - Published by Atlantis Press 806

Introduction

As cloud storage is increasing in popularity, more and more people choose
to outsource data to cloud storage server, which brings many benefits for clients
such as accessing data from anywhere and never worrying about the backups.
The storage servers do not ensure the confidentiality, so data has to be encrypted
before outsourcing. However, the classical cryptographic primitives prevent even
the data owners from retrieving documents according to given keywords.
Nowadays, many researchers study the searchable encryption to solve the
problem.
 The concept of searchable encryption was first introduced by Song, Wagner
and Perrig in[1]. It can be classified into two categories: symmetric searchable
encryption(SSE) and asymmetric searchable encryption(ASE). SSE is a scheme
that who searches over the data is also the one who generates it. The latest
security definitions for SSE were proposed by R.Curtmola[2]. In that paper, they
proposed two security definitions: Non-Adaptive indistinguishability security
and Adaptive indistinguishability security. More succinctly, the cloud server of
adaptive security can statistic history information including trapdoors and results
to perform more sophisticated attacks especially statistical attack. Most existing
schemes, [3], [4], [5], are all based on the non-adaptive security definition, so
they have no ability to against such powerful servers.
 In this paper, we propose an efficient encrypted search scheme that is
satisfied with the adaptive security definition in[2]. In order to confuse the cloud
server, we use the bilinear map to generate different trapdoors even using same
keyword during search phase. Furthermore, we modify an open-source search
engine with our solution to complete a prototype system and provide results from
experiments.

Preliminaries

Let be a dictionary of d words, and the set of all

possible documents. Let be a collection of n documents

. Let be the identifier of document D. let be

the collection of all document in D that contains the word w, then the outcome of

807

a search for keyword w should be the identifiers of documents in . In

addition, the function is used to encrypt the keyword w.

A bilinear map is a map e : , where G is a Gap

Diffie-Hellman group and is another multiplicative cyclic group of prime

order p with the following properties [6]: (1) There exists an efficiently
computable algorithm for computing e. (2) For all and ,

.

Our Scheme

In this section, we propose our scheme of SSE. Before the client sends
encrypted document collection to cloud storage server, our system perform
pre-processing operations to build encrypted indexes with document collection.
We modify the inverted index to establish our encrypted indexes, then sending
the indexes along with encrypted documents to server. When client want to query
a keyword, the system generate a trapdoor using keyword, secret key of client
and a random number, then the server can search the documents containing given
keyword with the trapdoor and return the identifiers of documents. The whole
search procedure involves just one round of communication.

Our scheme of SSE contains four polynomial-time algorithms: Keygen(),
BuildIndex(), Trapdoor() and Search().

1) is a probabilistic key generation algorithm that is run by

the client to setup the scheme. It takes a security parameter s and
returns secret and public keys.

2) BuildIndex(,D)SK is a probabilistic algorithm run by the client to
generate encrypted indexes. It takes a secret key SK and document
collection D as inputs and returns an index as output. The structure of
the index is a encrypted inverted index.

3) is still a probabilistic algorithm, that is
different from other systems. It runs by the client to generate the
trapdoor for given keyword w. It takes a secret key SK, keyword
w and a random number r as inputs and returns a trapdoor as
output.

4) is a deterministic algorithm run by server to search for

808

the documents in D that contain the given keyword w. It takes index I
of the document collection D and the trapdoor as inputs and

returns the set of identifiers of documents containing the keyword w.

Now let us make further explanation for our SSE scheme. In order to satisfy
the adaptive security definition [2], our scheme add the random element to every
trapdoor of query, that make the server has no chance to distinguish the view of
one history (including the outcome of each search and the pattern of searches)

from the view of other with probability non-negligibly better than
1
2

. For

example, if a client performs two searches with the same keyword “bank”, our
scheme generates different trapdoors using different random numbers. Hence,
even the cloud storage server has the history information, still not knowing the
client searching for the same underlying word, which protects the pattern of
searches. Note that our scheme still keeps simple and efficient. The storage cost
is ()O n , where n presents the number of the distinct keyword in document

collection. Furthermore, we trade search time for stronger security, which brings
computation costs to our system, but the search time is still relatively short,
which we will discuss it in experiment section.
 Now we present the details of our algorithm in Fig. 1 as follow.

809

Figure 1. Our SSE scheme algorithm

Experimental results

We modify the open-source search engine Apache Lucene[7] to build our

1. :
a) Generate random secret key SK: , {0,1}α ← sx
b) Generate public key PK : α←PK g

2. BuildIndex(,D)SK :
a) Generate inverted index L from document

collection D
b) For each posting list iL in L:

Replace the keyword iw of iL with
()ψ←i x iW w

c) Output index (,)←I PKL and send I to server
3. Trapdoor(, ,)SK w r :

a) Compute ← wM u and (())ασ ψ← ⋅x w M
b) Generate a random number r and the trapdoor

(,)σ← r
wT e g

c) Output (, ,)wT M r and send them to server
4. Search(,)wI T :

For each posting list iL in the index I :

a) Get the Term iW and compute
(() ,)← ⋅ r

i iE e W M PK
b) If (=w iT E):

Output the corresponding document identifiers
contained in iL

810

prototype system, which makes our system easily use the tokenizer and index
builder functions. By replacing the plaintext terms of inverted indexes with
ciphertext, we implant our own analyzer into the procedure of index building and
searching. The dataset used for experiments is distracted from Wikimedia
database and the size is over 1G. We use two common computers to organize the
experiment structure, one as client and the other as server. Furthermore, when we
evaluate the speed of searching, we eliminate the network delay associate with
the communication between client and server, because the speed of network
equipment is unstable.

(a)The relationship between corpus size and index size

(b) The relationship between returned documents and search time

 Figure 2. computation and storage cost
The client needs to build the encrypted index before transmitting encrypted

documents and index to the cloud storage server. Fig. 2 shows the computation
and storage cost during our experiments. We use a text file whose size is over
1GB and we divide the text file into about 10,000 documents. As we can see
from Fig. 2(a), the encrypted index is smaller than the original documents, which

811

brings low storage burden to the server. Fig. 2(b) shows that the search time is
related to the number of returned documents, so it takes longer to search an
extremely common keyword. However, even the returned documents achieve
60% of the whole document set, the search time still under one second, which
shows the efficiency of our scheme. Note that the stop words such as
conjunctions and pronouns are not included in keyword set of our experiments.

Conclusion

In this paper, we have further studied the problem of symmetric searchable
encryption, which safeguards the data privacy while still offering search ability
to clients. Our scheme is designed under the latest adaptive security definition,
which makes our scheme can against more sophisticated attacks. Our protocol
only needs one round of communication, as well as the searching speed and
storage cost are all linear to the distinct words in document collection. Finally,
we implement a prototype system by modifying open-source search engine and
perform experiments over real-world dataset to prove the availability and
efficiency of our scheme.

Acknowledgment

This research was partly supported by National Natural Science Foundation
of China under grant NO. 61100194, 61272173, 61403059, 6140060, and the
general program of Liaoning Provincial Department of Education Science
Research under grants L2014017.

References

[1] Song, Dawn Xiaoding, David Wagner, and Adrian Perrig. "Practical

techniques for searches on encrypted data." Security and Privacy, 2000. S&P

2000. Proceedings. 2000 IEEE Symposium on. IEEE, 2000.

[2] Curtmola, Reza, et al. "Searchable symmetric encryption: improved

definitions and efficient constructions." Proceedings of the 13th ACM

conference on Computer and communications security. ACM, 2006.

812

[3] Tang, Yinqi, et al. "Phrase search over encrypted data with symmetric

encryption scheme." Distributed Computing Systems Workshops (ICDCSW),

2012 32nd International Conference on. IEEE, 2012.

[4] Chai, Qi, and Guang Gong. "Verifiable symmetric searchable encryption for

semi-honest-but-curious cloud servers." Communications (ICC), 2012 IEEE

International Conference on. IEEE, 2012.

[5] Kissel, Zachary A., and Jie Wang. "Verifiable Phrase Search over Encrypted

Data Secure against a Semi-Honest-but-Curious Adversary." Distributed

Computing Systems Workshops (ICDCSW), 2013 IEEE 33rd International

Conference on. IEEE, 2013.

[6] Boneh, Dan, Ben Lynn, and Hovav Shacham. "Short signatures from the

Weil pairing." Advances in Cryptology—ASIACRYPT 2001. Springer Berlin

Heidelberg, 2001. 514-532.

[7]Hatcher, Erik, Otis Gospodnetic, and Michael McCandless. "Lucene in

action." (2004).

813

