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Abstract. 

Slow feature analysis (SFA) is a method that extracts the invariant or slowly 
varying features from an input signal based on a nonlinear expansion of it. This 
paper introduces SFA into industrial process monitoring. It overcomes the innate 
drawback of principal component analysis (PCA) that it fails to draw the more 
complex features or underlying nonlinear structure of the industrial process 
signals. Moreover, the invariance and slowness indicate the intrinsic properties 
of data. Thus the extracted information is interesting for data analysis. For the 
purpose of fault detection, two statistics are constructed: the T2 statistic and the 
SPE statistic. Then, these two statistics are applied to perform process 
monitoring. Simulations are run on the Tennessee Eastman (TE) process and the 
results illustrate the effectiveness of the proposed method. 
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Introduction 

The prosperous development of computer science and its related fields has 
brought a fundamental evolution to modern industry during these decades. The 
industrial process control system has become more integrated, intellectualized 
and complicated. The conventional method of modeling the actual industrial 
processes for control is less practical and effective [1]. Meanwhile, the 
data-driven methods have been applied in industry process very successfully 
[2].Principal component analysis is a classical multivariate statistical method 
was introduced into process monitoring [3]. PCA is a linear method to extract the 
uncorrelated components from the input data. However, in practical the process 
data are usually of high nonlinearity. In this paper slow feature analysis [4] is 
applied to tackle this problem. SFA can be used for feature extraction, 
dimensionality reduction, and invariance learning [5]. It performs a nonlinear 
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transformation on the input signal and draws the slowest varying components, 
which are senior representation of the input and indicate the intrinsic properties 
of the original system or the source. The core of SFA algorithm is eigenvalue 
decomposition [4].Its nature is to search for the optimal linear combination that 
satisfies the objective function in the nonlinearly expanded feature space. Its 
nonlinearity is realized through introducing the higher order polynomials of the 
input variables in. The order of the polynomial reflects the richness of the feature 
space. More nonlinear the extension is, more process intrinsic information the 
outputs will convey. 

This paper applies SFA for fault detection. With a good selection of the 
nonlinear extension of the input signal, SFA can catch the inherent and nonlinear 
information of the system very well. Therefore, the effect of fault detection can 
be expected to be improved. The simulation results demonstrate this expectation. 

Slow Feature Analysis 

Slow feature analysis is proposed by Wiskott [4] to extract the slow features 
from fast varying complex signal. Slow features refer to the underlying slowly 
varying components of a signal and characterize its intrinsic properties. SFA 
obtains global optimization, which are the slowest features according to the 
changing rate in ascending order.  

The learning problem is formulated as follows [4]: 
Given a multidimensional input signal x(t) = [x1(t), … ,xn(t)]T with t 

indicating time and n the dimension. The goal is to find an input-output function 
g(x) = [g1(x), … ,gm(x)]T, so that the generated m-dimensional output signal y(t) 
= [y1(t), … ,ym(t)]T with yi(t) := gi(x(t)) satisfies: 

∆(yi) ≔  〈ẏi2〉is minimal for each i ∈ {1, … , m}, 

 

(1) 

under the constraints  

〈yi〉 = 0   

 

(2) 
〈yi2〉 = 1 

 
(3) 

∀ i < 𝑗𝑗 ∶         〈yiyj〉 = 0,  
 

(4) 
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where〈∙〉 denotes the temporal average and yı̇  is the first derivative of yi . 
Equation (1) describes that the objective of the learning problem is to minimize 
the temporal fluctuation of the output. The constraints Eq.(2) and Eq.(3) 
eliminate the trivial solution 𝑦𝑦𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 . Constraint Eq.(4)guarantees the 
decorrelation of the output signals. 

The learning problem is in general difficult to solve. Therefore, the output 
functions giare constraint to be a linear combination of a finite set of nonlinear 
functions as follows: 

gi(x): = ∑ wiphp(x)P
p=1 . 

 
(5) 

The function vector h = [h1, … ,hp]T expands the input signal nonlinearly to 
form a new signal z(t), which is defined as z(t) := h(x(t)).So the i-thcomponent 
can be expressed as: 

yi(t) = gi(x(t)) = wi
Th(x(t)) = wi

Tz(t).   

 

(6) 

Therefore, the learning objective can be reformulated: 

min∆(yi) ≔  〈ẏi2〉 = wi
T〈żżT〉wi.  

 

(7) 

Suppose 𝐡𝐡 is chosen such that the mean of 𝐳𝐳(t) is zero and the variance of 
𝐳𝐳(t) is one.This can be achieved simply be a whitening step based on an 
arbitrary 𝐡𝐡′. So the constraints can be found with: 

〈yi〉 = wi
T 〈z〉�
=0

= 0                                                     

(8) 
〈yi2〉 = wi

T 〈zzT〉���
=I

wi = wi
Twi = 1   

 
(9) 

∀ i < 𝑗𝑗 ∶         〈yiyj〉 = wi
T 〈zzT〉���

=I
wj = wi

Twj = 0.  
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(10) 

The constraints can be fulfilled if W=[𝐰𝐰1, … ,𝐰𝐰𝑚𝑚]𝐓𝐓isorthogonal matrix.Thus, the 
normalized vector that minimizes ∆(𝑦𝑦1) is the normed eigenvector of matrix 
〈�̇�𝐳�̇�𝐳𝐓𝐓〉that corresponds to the smallest eigenvalue [6]. The normed eigenvector of 
the second smallesteigenvalue gives the component with second smallest ∆ 
value, i.e. ∆(𝑦𝑦2), and so on. Principal component analysis is applied to complete 
this step. 

Fault Detection based on SFA 

As the orthonormal set of vectors is derived from PCA, the fault detection 
procedure can be inherited from PCA. Two statistics are constructed:  

T2 = zTWsΛ−1Ws
Tz，Ws ∈ RP×r 

(11) 
SPE = ‖𝒛𝒛�‖2 = �(𝑰𝑰𝑷𝑷 −𝑾𝑾𝒔𝒔𝑾𝑾𝒔𝒔

𝑇𝑇)𝒛𝒛�2,        𝑰𝑰𝑷𝑷 ∈ 𝑅𝑅𝑷𝑷×𝑷𝑷 
 

(12) 
 
𝑾𝑾𝒔𝒔is the reduced matrix of 𝑾𝑾 and consists of r selected eigenvectors. 𝜦𝜦is a 
diagonal matrix with r smallest eigenvalues as its diagonal entries.  T2reflects 
the process changes through the norm vibration of the slow features. 
SPEexpresses the distance of a sample to the feature space and reflects the 
deviation of a measured value from the model. 

Simulation and Result 

TE process experimental platform [7,8] was developed by Downs and Vogel in 
1993. It can simulate the complicated industrial conditions in reality very well. 

The training set consists of 500 normal samples, each of which contains 33 
variables. The specific definition of each variable can be referred to in [7]. 
Firstly, perform SFA on the training dataset. Then tests are done on the test 
datasets. Each test dataset has 960 samples of 33 dimensions. The first 160 
samples of the test dataset are normal data, while the following 800 samples are 
fault data. The detection results of SFA are listed in Table 1 with a comparison 
with that of PCA. 
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Fault 
Model 

PCA SFA 
T2 SPE  T2 SPE 

IDV(4) 24.1% 100.0% 46.1% 98.8% 
IDV(6) 99.3% 100.0% 100.0% 100.0% 

IDV(10) 41.5% 41.4% 56.6% 47.9% 
IDV(12) 98.5% 93.5% 99.0% 98.0% 
IDV(17) 78.6% 95.6% 87.3% 96.0% 
IDV(20) 38.8% 56.5% 51.8% 54.3% 

Table 1Comparison of Fault 
Detection Accuracy between 

PCA and SFA 

Figure 1 TE Process 
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Figure 2 Comparison of Fault Detection Effectiveness between PCA and 
SFA when Fault 10 happens 

Table 1 indicates that the T2 statistic of SFA has a better performance than that of 
PCA. As to SPE statistic, each has advantage. Fig. 2 illustrates the feasibility and 
effectiveness of the SFA method for fault detection 

Conclusion 

This paper proposes a fault detection method based on SFA to overcome the 
weakness of conventional PCA method that it deals only with linear models. 
SFA applies to both linear and nonlinear mixed models. It draws the slowly 
varying information from the process data and uses this information to detect 
fault in the industrial process. Slowness characterizes the industrial process 
inherently. The simulation results on the TE process have shown the feasibility 
and effectiveness of the SFA method for fault detection. In the future, two 
aspects of work can be done to optimize the process monitoring performance 
based on SFA. Firstly, use a kernel-based nonlinear extension of input signal, 
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which enriches the feature space to a great extent. Thus the extracted signals 
contain more intrinsic information of the industrial process. Then better results 
can be expected. Secondly, the outputs of SFA are uncorrelated, but not 
independent. It means the higher order information is not taken into 
consideration. Therefore, efforts can be made to incorporate the goal of 
independence in the scheme of SFA algorithm. 
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