
 

Image Denoising Based on TVD Runge-Kutta 

Method  

And Projection Algorithm 

Zhenhai Wang, Lan Zhang, Yufeng Nie and Xuewei Cui 
Department of Applied Mathematics, Northwestern Polytechnical 
University,  Xi’an, 710129 , China  

Abstract 

In this paper, based on Chambolle’s Projection Algorithm, an PDE was proposed 
to replace the total variation model for removing image noise. In order to 
improve the algorithm, the TVD Runge-Kutta method, which has high-
precision  of  time direction, was introduced to solve the equation. The numerical 
results show that the algorithm has high efficiency. It can make the 
image smoother, and it improve the speed of image denoising. 
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1. Introduction 

The image has become an important source for people to get the objective world, 
but the actual image often disturbed by the noise in the transmission, thus it 
brought to difficulties in image analysis and processing, and affecting the image 
segmentation, edge detection and feature extraction and so on. Denoising is the 
problem that only takes into account the random phenomenon and it consists of 
removing noise from an image. The most commonly studied noise model is 
additive white Gaussian noise, where the observed noisy image 0u  is related to 
the underlying true image u  by the degradation model [1] 
                              0u u η= +                                                                          (1) 

u is an original image, 0u  observed image, η  is the standard deviation of the 

noise. We recover the original image u  from 0u  is a typicall ill posed inverse 
problem. The classic solution method is the use of regularization methods, set up 
the corresponding  variational  model [2 ]: 

           ( )
2 2

0F u u Ru dx u dxλ
Ω Ω

= − + ∇∫ ∫                                       (2) 
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The first term 
2

0u Ru dx
Ω

−∫  is measures the fidelity to the data, and the 

second 
2

u dxλ
Ω

∇∫ is a smoothing term.The λ  is the regularization 

parameter. In order to preserve the edges as much as possible, One of the most 
models for image reconstruction is the total variation, which is based model 
developed by Rudin, Osher and Fatemi [3]. This model studies the minimizer 
of the following energy: 

               ( )
2

0 ( )F u u Ru dx u dxλ ϕ
Ω Ω

= − + ∇∫ ∫                            (3) 

The next problem is get a numerical approximation for total variation 
denoising, if we directly the Euler-Lagrange equations, the difficulty is to define 
variations on BV( )Ω have been developed. In order to circumvent this 

difficulty, Chambolle has proposed projection algorithm[4].When ( )t tφ = , and 
R is the identity operator, Chambolle and Lions proved that (2)-(3) is naturally 
linked to the following unconstrained minimization problem: 

                      
2

0
1min

2
u u dx u dx

λ Ω Ω

− + ∇∫ ∫                                (4) 

In view of (4), denoising is performed as an infinite-dimensional minimization 
problem, where the search space is the set of all images with bounded variation. 
BV-functions appear as a natural model for images, characterized by the 
appearance of discontinuous hypersurface. Let NRΩ∈  be a bounded domain, 

2N ≥ , we can observe that the total variation of a function ( )1u L∈ Ω  is 
defined by 

( ) ( ) 2
1 2sup ( ) ( ) : , ,..., ( ; ), ( ) 1,NTV u u x div x dx R x xϕ ϕ ϕ ϕ ϕ ϕ

Ω

 
= = ∈ Ω ≤ ∀ ∈Ω 

 
∫ １

cＣ

Where 
1

( )
N

i

i i

div x
x
ϕϕ

=

∂
=

∂∑ , It is well known [5] that TV( )u  is finite if and 

only if its distributional derivative Du is a finite Radon measure, and we have 
TV( ) D( )u u= . 

Many algorithms for total variation denoising have been developed, in this 
paper we focus on Chambolle’s projection algorithm for minimizing the total 
variation of a gray-scale image. It is based on a dual formulation and it is related 
to the works of Chan, Golub and Mulet [6], Prime-Dual method. We introduce 
the discrete gradient operator and discrete divergence operator with the central 
difference. On computing side, we proposed TVD Runge-Kutta method to 
numerical solution process.  
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2. Projection algorithm based on the Central Difference 
In order to improve the image denoising effect , minimize the total variable 
projection can be seen as a problem in an appropriate Convex set. On the 
computing side, the most commonly used discrete variational model is based on 
the discrete energy . 

Let us fix our notations. To simplify, our images will be a two-dimensional 
matrix of size N N× , 0 ,i ju ( , 1, 2,3... )i j N=  is discrete imags ，

N NX R ×= is a set of the all discrete images. For 0 ,i ju X∈ , we introduce the 

discrete gradient operator :U X X X∇ → × ,via the central difference , 

1 1,

1
, 1

2
0 , 1,

i j i ju u
i Nu

i N

+ −−
< <∇ = 

 =

，

, 
, 1 , 1

2
, 1

2
0 , 1,

i j i ju u
j Nu

j N

+ −−
< <∇ = 

 =

 

That is, for every p Y∈  and u X∈ , , ,
X Y

divp u p u− = ∇ . 
One checks easily that div is given by 

, , ,( ) ( ) ( )x y
i j i j i jdivp divp divp= +  

1 1,
1

1 ( 1, ) 1,2
2

, 2 1
2

1 ( 1, ) 1,
2

i j i j

p i j i

p p
divp i N

p i j i N N

+ −

 + =


−= < < −

− − = −


，

,
1 , 1

2

1 ( , 1) 1, 2
2

, 2 1
2

1 ( , 1) 1,
2

i j i j

p i j j

p p
divp j N

p i j j N N

+ −

 + =


−= < < −

− − = −


，
 

thus, the discrete variational model is: 

( ) ( ) ,
, 1

N

i j
i j

J u u
=

= ∇∑  

where，function ( )1u L∈ Ω . the problem is converted to：    

                         ( ) 20
1min{ }

2 Xu X
J u u u

λ∈
+ −                                         (6) 

where u , 0u  are discretization vectors of related continuous variables, 
2.
X

 is 

the Euclidean norm in X, is given by 
2 ,
X X

u u u= .The minimization of the 
model (5) can be performed using arguments from convex analysis. Under this 
scope, we present the projection approach of Chambolle in the continuous setting. 
It is shown in [4] that the solution u of problem (5) is given by 

( )FK fu f λπ= −  
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Computing the nonlinear projection ( )FK fλπ  equivalent to sovling the 
following problem: 

      
22

0 ,min{ : , 1 0, , 1,..., }i jdivp u p Y p i j Nλ − ∈ − ≤ ∀ =     (6) 

Then obtained from the KKT conditions[7],there existence a Lagrange 
multiplier , 0i jα ≥ ,associated to each constraint in problem (6), such that we 

hanve for each ,i j  

0 , , ,( ( )) 0i j i j i jdivp u pλ α− ∇ − + =  

Where either , 0i jα ≥  and , 1i jp = ,or , 1i jp < ,and , 0i jα = .Thus in any 

case , 0 ,( )i j i jdivp uα λ= − . 

Then chambolle propses the fixed point algorithm[8],choose 0τ > ,let 
0 0p =  and for any 0n ≥ , 

, , ,

1 10 0
, ,(( ( )) ( ( )) )i j i j i j

n n n n n
i j i j

u up p divp divp pτ λ λλ λ
+ += + ∇ − − ∇ − , 

So that  

         
,

,

0
,1

0
,

( ( ))

1 ( ( ))

i j

i j

n n
i jn

n
i j

up divp
p

udivp

τ λ λ

τ λ λ

+
+ ∇ −

=
+ ∇ −

                                       (7) 

After a number of iteration steps to meet the conditions image p ,then we 

can obtain the denoising image u from 0u u divpλ= − . 

Remark : When 
1
2

τ ≤ , ndivpλ converges to ( )k gλπ  as n →∞ . 

It is shown in [4] that by definition of the operator div with K given by  

,{ : , 1, , 1,..., }i jdiv p p Y p i j N∈ ≤ ∀ =  

Now, we let  

0, 1, , 1, 0j j N j N jp p p p −= = = = , ,0 ,1 , , 1 0i i i N i Np p p p −= = = = , 

Hence 2 2K ≤ . 

3. Tuning λ  

The choice of the parameterλ  affects the balance between removing the noise 
and preserving the edges. Thus we must choose a optimum parameters . For TV 
denoising, there are some algorithms to tune a value ofλ , Chambolle [ ] propses 
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that we can replace λ with the new value 0/
X

N u uσ − .We initialize the 

iteration process with the following empirical estimate of λ , suggested in [9]: 

0 2

0.7079 0.6849λ
σ σ

= + , 

And the algorithm is described as follows: 
Input σ  and 0λ , 
For i=1:30; 

0λ λ= ; 

0u u divpλ= − ; 

0/
X

N u uλ σ= − ; 
end 

4. The projection based on TVD Runger-Kutta algorithm 

Discrete time direction generally using the standard Euler method , but only 
linear accuracy Euler method to obtain high accuracy, usualy we use TVD 
Runge-Kutta methods [10]，TVD Runge-Kutta method is the traditional Runge-
Kutta method to transform Runge-Kutta，which its weights are positive. In 
order to avoid unnecessary oscillation generated numerical solution process. We 
use the third-order TVD Runge-Kutta format: 

)()1( nn utLuu ∆+=  

)(
4
1

4
1

4
3 )1()1()2( utLuuu n ∆++=

 

)(
3
2

3
2

3
1 )2()2(1 utLuuu nn ∆++=+

 

For the discretization equation(7) can be turned into the equation about 
p
t

∂
∂

 ，

that is as the following form： 
          

( ) 0 0) )n np u uL p divp divp p
t

λ λλ λ
∂     = = ∇ − − ∇ −    ∂     

      

                        (8) 
By the third-order TVD Runge-Kutta, we can obtain the improved algorithm 
iteration steps are as follows : 

( )1
n np p t L p= + ∆ ×
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( )112 4
1

4
3 pLtppp n ×∆++=

 

( )1
2 2

1 2 2
3 3 3

n np p p t L p+ = + + ×∆ ×
 

0 -  u u divpλ=  

5. Experimental Results 

In this section, we take several groups experimental to prove the effectiveness of 
our model. We use root of mean square of errors(RMSE）and peak signal to 
noise ratio(PSNR) to compare algorithm the effect of denoising. We define the 
PSNR and RMSE as: 

2

1 1
2

0
0 0

max
10lg

( )

ij
M N

ij ij
i j

u
PSNR

M N u u
− −

= =

=
× −∑∑

 

( )( )
21 1

0
0 0

1 ( , ) ,
M N

m n
RMSE u m n u m n

MN

− −

= =

= −∑∑  

We choose two different standard images to test. We try to choose the 
regularization parameter by QPSO method. We can demonstrate how to choose 
the value of paramter by our method, which is influences the denoising result. 

In the experiment, We added the Gaussian noise of satandard deviation is 15, 
25, 35, 50 for each image. We set the the iterations is 50.  

In order to display our algorithm’s outperformance, we first use Chambolle’s 
projection algorithm to solve the ROF model.Then we initialized the iteration 
with the constant paramter 1.0=λ . Now we can see how the QPSO algorithm 
for TV-regularized denoising behaves. 

When we add different satandard deviation σ  in lena image, the optimal 
regularization parameter λ  is different in our method. It has changed due to 
QPSO with the increasing of iteration. As the deviation is increasing, the 
paramter is decreasing. 

As shown in Fig.1-4, we first set the regularization parameter 1.0=λ in ROF 
model with a constant value. When we add different satandard deviation σ  in 
lena image, the tracking of the regularization parameter λ  is different in our 
method. Especially, from the vision the denoising image effect is much better 
than the using the constant parameter. We observe that while sharp edges or 
some detail have been blurred or disappeared in the method by constant paramter. 
But in our method we have been able to remove much of the noise while 
preserving the while sharp edges. The first example demonstrates the total 
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variation image denoising based QPSO for Gaussian denoising affect  the value 
of λ  influences the result. 

 
Fig.1 15=σ   Denoising with Lean image 

 
Fig.2 25=σ  Denoising with Lean image 

 
Fig.3 35=σ  Denoising with Lean image 

 
Fig.4 50=σ  Denoising with Lean image 

 
Table 1 The values of RMSE for Lena image 
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 σ=50 σ=35 σ=25 σ=15 

λ PSN
R 

λ PSN
R 

λ PSN
R 

λ PSN
R 

Consta
nt 

paramt
er 

0.1 30.50 0.1 31.03 0.1 31.29 0.1 31.50 

Optim
al 

parame
ter 

0.02 30.82 0.04 31.91 0.05 33.01 0.09 34.80 

In the Table1, every denoising image’s PSNR is shows in the table, we clearly 
see the PSNR is better than using constant parameter.  

6. Conclusions 

In this paper, we maily using intelligent optimization algorithm to the inverse 
problem in image processing. The results of the regularization parameter are 
better than using the constant value which is formerly chosen. It is because of the 
fact that whenever QPSO wants to estimate the regularization parameter, it tries 
to eliminate the smoothing effect by choosing a small parameter and then tries to 
eliminate the noise effect by choosing a big regularization parameter. In the 
future, different types of inverse problem in image processing will be tested with 
optimal regularization method. 
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