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Abstract.  

According to the existing problem of the convention methods, an adaptive 
independent component analysis method is proposed. First, the signals are 
divided into the heavy tailed and light tailed signals according to the kurtosis. 
For the heavy tailed signal, the method off-line computes the score function and 
establishes the lookup table of the standard alpha stable distribution, and then 
compute the score function of the mixture signals. For the light tailed signal, the 
score function is estimated by the general Gaussian model. Simulated results 
show that, the proposed algorithm has a well performance and a lower 
computational complexity. 
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Introduction 

In recent years, independent component analysis (ICA) techniques have been 
widely applied in the blind source separation[1-4]. The ICA method should 
depend on the probability density function (PDF) of each source. The tail 
characteristic is the key factor of the PDF. The signal is the heavy tailed 
(super-Gaussian) signal if kurtosis is positive, otherwise it is light tailed 
(sub-Gaussian) signal. Some traditional methods rely on assumptions on the 
source statistics [5]. Some algorithms cannot produce the desired source when 
the assumptions are inaccurate [2]. Methods that employ a flexible PDF model 
have been introduced [5,6]. These methods usually select alternative the score 
function in an iterative process. 

Recently, some state-of-the-art approach have well extraction effect by using 
the accurate density estimation method [7-12]. However, these methods is not 
suitable for the impulsive data, and moreover have the high computational 
complexity.  

In this paper, an adaptive ICA method using alpha stable distribution and 
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general Gaussian model (GGM), is introduced. The signals are divided into the 
heavy tailed and light tailed signals according to the kurtosis. For the standard 
heavy tailed and light tailed distribution, the score function lookup table are 
established in advance based on the alpha stable distribution and GGM, 
respectively; and then compute the score function of the mixture signal. 

ICA model 

Let s1, s2, …, sN is the dependent source signal, where N is the signal dimension. 
X=AS is the mixture signal that are mixed by an unknown, full-rank matrix AN×N. 
The reconstruction of the sources is attempted through a linear projection of 
Y=WX.  

The basic principle of most ICA frameworks is the information entropy 
maximization between the reconstructed signals, and the objective function is 
reduced to 
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where ( )H ⋅ denotes the entropy. The natural Riemannian gradient learning 
algorithm is given by [3] : 
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where I is unit matrix, η is the learning rate, and the score function ø(Y) is given 
by: 
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(3) 
where p′(yi) is the derivative of the PDF p′(yi) with respect to yi. 

Score Function Estimation of Heavy Tailed Signal 

As mentioned above, some ICA methods are not suitable for the impulsive data 
that follows the heavy tailed distribution. Here, we estimate the mixture signal 
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PDF and score function by the Alpha stable distributions. 
Alpha stable distributions are suitable for heavy tailed distribution signals 

such as various impulsive data [13,14]. Alpha stable distribution characteristic 
depends on the characteristic, symmetry, scale, and location parameters. 
Characteristic parameter α sets the thickness of the tails and the impulsiveness of 
the distribution; symmetry parameterβ sets the skewness; scale parameter g 
sets the dispersion around the mean; location parameterδsets the shift of the 
PDF. 

Alpha stable distribution is described only by the characteristic function [13] 
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(4) 
The PDF of a random signal Y is equal to the Fourier transform of the 
characteristic function 
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For an standard alpha stable distribution ( 1, 0γ δ= = ), Eq. 6 can can be 

simplified as: 
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(6) 
Therefore, a non-standard alpha stable distribution can be written as 

, , ,0 , ,1,0( ) ( )f X f Yα β γα  β= ,                                                        

(7) 
where X=Y/g. 

The computing time is rather large in the direct numerical integration of Eq. 6. 
Therefore, for the sake of decreasing the computing time, we obtain the PDF and 
score function of the standard alpha stable distribution by the fast Fourier 
transform (FFT) off-line calculation; then establish the lookup table; last estimate 

1099



 

α, β, g and the score function in the lookup table. 
The process is as follows:  
1) Sample (αi,β i), i=1,2,…,m in the [0,2] of α and[-1,1] of βrespectively. 
2) Compute the score function of in (αi,β i), and establish the lookup table of 

the score function. 
2) Compute the parameter α, β and g of the signal Y. 
3) Seek the value of f(Y)α,β,1,0 in the lookup table that is close to (αi,β i) and 

compute the score function of Y. 

Score Function Estimation of Light Tailed Signal 

In order to estimate a the PDF and score function of the light-tailed distribution, 
we describe the light-tailed signal using the GGM [6]. The PDF of the 
generalized Gaussian distribution with a shape parameter λθ and a scaling factor 
θ is represented by 
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(8) 
The kurtosis kθ and shape parameter θ can be obtained by 
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(9) 
In order to obtain pθ(y) in Eq. 8, we need compute θ. However, θ is unknown 

but kθ is known in the Eq .9. Therefore, we establish off-line a lookup table of θ. 
In the iterative process, we seek the value of θ in the table that is close to kθ. 

Simulation Experiments 

In order to investigate the performance of the proposed adaptive ICA algorithm, 
the blind separation was attempted with the Extended InfoMax ICA [5], Kernel 
ICA [7], and our algorithm. The kurtosis of source signals were 0.261,0, -0.3778, 
-0.1278 from up to down, as shown in Fig. 1. The sample size was 1000, and A 
was a 4 4×  random matrix. Fig. 2 are the mixture signals. 
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Fig. 1. The source signals 

 
Fig. 2. The mixture signals 

The weight matrix was initialized as the identity matrix. The learning rate η 
was 0.05. Fig. 3 are the reconstructed signals. 
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Fig. 3. The reconstructed signals 

The separation performance was evaluated in terms of median 
signal-to-interference ratio (SIR) defined as [8] 
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where M is the sample size. The results show that the proposed ICA algorithm 
has a well separation performance with different sample sizes, as presented in 
Fig. 4. 

 
Fig. 4. Results of the separation performance 

The CPU time of the three ICA algorithms is shown in Fig. 5 with various 
sample sizes. Here, the sample dimension is 6. It is noticed that our algorithm is 
faster than Kernel ICA. 
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Fig. 5. Running time in terms of CPU seconds 

 

Summary 

We proposed an adaptive ICA method that is blind to the distribution of the 
original signal. Simulated results show a well convergence property and a lower 
computational complexity of the proposed method. The method is suitable for 
the analysis of real-world mixtures, especially for the heavy tailed signal. 
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