

White List Security Management Mechanism
based on Trusted Computing Technology

Baohua Zhao1,a, Hao Zhang2,a, Hao Guo1,a, Yue Qi2,a
1 China Electric Power Research Institute, Beijing 100192, China
2 State Grid JIBEI Electric Power Company Limited, Beijing 100053,
China
aemail: cuizhanhua@163.com

Abstract

A security management mechanism with white list is proposed based on trusted
computing technology. The mechanism runs dynamic measurements to verify
their integrity when the software or the program starts, which is an active
defense mechanism based on trusted computing technology. It can effectively
prevent unknown malicious programs, progresses or codes running to get
sensitive information, which does not have disadvantages of some traditional
antivirus software, such as feature code or virus database update, patching or
bugs fix, etc.
Keywords: Trusted Computing; White List; Dynamic Measurement

Introduction

A "white list" is a set of concepts in contrast to "blacklist". The so-called
"white list" refers to rules set up in the allowed list, which are "good" or
"allowed". By contrast, the "blacklist" means "bad" or "not allowed".
"Application white list" is a group of applications which are allowed to run in the
system[1-6].

The antivirus software principles will help us understand the application white
list management system. In fact, antivirus software virus is a blacklist. When the
program runs, the antivirus program matches the corresponding rules in the
blacklist, it proves corresponding programs may be viruses, Trojans and other
harmful programs if the match is successful[8-11]. However, the blacklisting
antivirus software mechanism has two drawbacks. First, the scope of viruses or
Trojans is determined in the blacklist, it will easily being threatened by
"Zero-day" attacks when a new threat is not on the blacklist list and the virus
database has not being updated. Second, more and more viruses and Trojans will
result in unlimited expansion of blacklisting. Rules matching will be a
time-consuming job when blacklisting reaches a certain scale, which is the
reason the computer with anti-virus software installed will run comparatively
slow after running a period of time.

International Symposium on Computers & Informatics (ISCI 2015)

© 2015. The authors - Published by Atlantis Press 1369

Known as the "next generation of information security products", the
application white list technology can become a substitute for antivirus software,
preventing malicious software attacks and unauthorized programs running, and
so on. Meanwhile, it can solve the "Zero-day" attacks and performance problems
providing the system's safety and system operating in control from the
application level. Application white list management system can meet the user
demand from the aspect of safety, performance and functionality, therefore, there
are some advantages to develop white list security management mechanism
based on trusted computing technology.

First of all, such a mechanism is the need of application white list to manage
system security [12-14]. It is a very challenging task to protect the integrity and
consistency of a software system if the application white list system is developed
on the basis of pure software systems. In contrast, the trusted computer system is
a hardware-based security platform, which can solve the insecurity of computer
and network infrastructure, providing high security with the trust chain
established from chip, hardware and operating systems.

Second, it is needed to ensure that the operating system loads procedures and
core files with integrity and security. Currently, many viruses and Trojans target
are for vulnerabilities of the operating system itself, infecting core operating
system files and installed programs. Application white listing management
systems based on trusted computing technology apply the principle of mandatory
access controls and mechanisms and implement the operating system integrity
checking, which enhances the security level of the entire operating system.

Trusted computing platform and trust mechanism

Trustworthy refers to "behave at realization of the given target is always of an
entity as well as expected results." Trusted computing [15-19] is a trusted
component such that operation or process in any operating conditions is
predictable, and it is able to resist the bad code and the devastation caused by a
physical disturbance. Trusted computing is the foundation of security, starting
from the trusted root and solving the security problems resulted from the
structure of the PC. It has the following features:(1) providing the identity,
competence, integrity and availability of workspace of users; (2)providing the
confidentiality and integrity of the storage, processing, transmission; (3)
protecting the hardware environment configuration and the integrity of the
operating system kernel, services and applications; (4)providing the safety of key
operations and storage. Trusted computing passwords support platform for
trusted cryptography module run as a trusted root and platform for its security
management functions through the following three types of
mechanisms:(1)Starting with the credible measurement, computing system
platform integrity measurements, establishing trust chain computer system
platform, ensure that the system credible;(2)Credible reporting credible identifies
platform, uniqueness, based on credible reports, and platform identity and
integrity of reporting;(3)Based on trusted storage root key management, platform
data security features to provide the appropriate password service.

1370

As we know, trusted computer works with Trusted Platform Module security
chips, which run as a trusted root to measure the hardware configuration,
operating system, applications, and the overall platform integrity. Trusted
Platform Module stores integrity data to protect integrity of the platform status
report and judge the credibility of a platform to ensure that the interactive
platform is not infected by malicious programs.

The concept and principle of white list

White list security management system based on trusted computing [22-26]
ensure that the operating conditions are safe in its full life-cycle. Before the
system is loaded, the system verification and protection is implemented by the
trusted computing platform from a hardware perspective; When the system is
loaded, it is verified by trusted roots layer by layer, which guarantee the safety
and consistency of white list itself; After the system is loaded, the white list runs
to protect the safety of the system. The proposed white list security management
system provided security in whole life cycle, covering the system loading, ruing
and using.

The white list security management mechanism based on trusted computing
performs security check before and after the system startup with the following
procedures:

Step 1: After the computer starts, its control it taken over by the underlying
trust root;

Step 2: Trusted root verifies the integrity of BIOS, and transfers control to
BIOS after its integrity check is successful;

Step 3: BIOS MBR verifies the integrity of the operating system loader, and
transfers control to the operating system loader after its integrity check is
successful;

Step 4: The operating system loader verifies the integrity of the operating
system kernel and critical components, transfers control to the operating system
after successful;

Step 5: Operating system completes the white list validation and loads system;
Step 6: White list management system checks the security of operating system

core.
When the computer runs in normal operation phase, white list security

management mechanism is enabled to protect individual applications running in
computer.

White list management based on trusted computing

White list mechanism is mainly used for dynamic measurement during the
programs startup. Trusted computing technology is used to develop white list
management mechanism, which runs an executable program integrity check to
prevent them from malicious code and other attacks.

To control all executable code loaded from the system, trusted white list scan
tools are developed to record full execution path and abstract value. Before

1371

loading the code, all executable files have to be checked and compared with
trusted white list, they will not be allowed to run if the executive summary does
not match. The white list mechanisms are implemented in the kernel loop filter
layer 2, as shown in figure 1.

Management
center

Program request
Kernel takeover

request

Extract hash
values, white

list validation

White lists

Verification
results

Proxy tools

Submit the
Request,system
take over the

request

Yes

NO

Upload audit information

Program run
successfully

Kernel rejects
requests,record

information

System log
output

Fig.1. White list security management mechanism

 (1) Definition of white list
White list is made up of three categories (shown in figure 2), including local

white list, network white list, a temporary white list:
Category1: Local white list refers to system white list and installed program

white list (software right acquisition mode), which is maintained by the client.
System white list is generated by scanning interface when it is installed and it
cannot be used as software templates. Installed program white list is generated
by installed program interface, software scanning interface and network control
scanning interface in software acquisition privilege mode.

Category 2: Network white list refers to software template white list and
abnormal program white list which is maintained by the Central Administration.
Software Templates white list is generated by management center when the
client program group reports to the management center. The client can use
software template to install template software without software acquisition
privilege mode. Abnormal program white list is generated by the unknown
program approval process.

Category3: Temporary white list refers to upgrade program white list which is
automatically generated when the software upgrades and they will be
automatically added to the white list when the system starts. Upgrade program
white list is generated by the upgrade process.

1372

Setup to scan
the whole root

 Do hash record
for program
meets the

requirements

Generate
whitelist

Reported unknown
programs

Start hash tool
scans the
specified

directory or
program

 Do hash record
for program
meets the

requirements

Software
Installation

Start the
os_install tool,
enter the shell.

All new release
program or

script to do
hash record,

exit the shell

Agent Tools

Management
Center

Downloaded policy insert

Reporting program content hash

Strategies approved

Collect
ion

Throw
away

Fig.2. White list generation Business Process
All white list files in Linux are stored in the “white list” file. For programs in

white list repository, the mechanism provides tamper-proof protection and
prohibition of non-authorized modification so that they cannot be renamed,
changing position, modified and deleted. In the default case, only upgrade
programs or executive programs created by upgrade programs can perform
operation of add, deletion and changing for all executive programs in the white
list repository. The modified programs can run immediately and stored into a
temporary file, which will be written into white list after the operating system
restarts. Network white list does not have anti-tampering function.
4.2 Software installation control by white list mechanism

Software installation control with white list mechanism is shown in figure 3.
The mechanism provides software installation interface to install applications for
the way of the software installation package. During the installation of the
software, white list is generated by scanning interface and permit them to run.

Client software are installed in two ways: with software acquisition right and
without software acquisition right, which will help control the installment
permissions in desired granularity.

Situation 1: software installment with software acquisition right. When the
client is the acquisition terminal, it can authorize the client with “software
acquisition” right by management center. Then, software could be installed by
installment interface of the client. Moreover, these programs will be added into

1373

local white list and run immediately. Meanwhile, with except of system white
list, the installed software white list can be exported to as policy files, which will
be reported to management center to determine whether they will be deployed
into other clients.

Situation 2: software installment without software acquisition right. In default,
the client does not have acquisition right. Only template software from
management center can be installed by software installment interface in such
situation, and they will be automatically added into network white list and run
immediately.

Management Center
issued the

whitelist policy
templates

Network white list

Software
Installation

Agents receive
and add a policy

template

Whether to open
the Acquisition

Interface

Gadgets

No

Software
Installation
Interface

To determine
whether Internet

whitelist

Yes

Allow
installation

No

Prohibit
execution end

Allow execution

Software
acquisition

rights process
Yes

White list policy
template

management center

Import Manager
client through
the network,

media

Management
Center

Audit reporting

Audit
reporting

Fig.3. Software installation control by white list mechanism

Experiment results

The white list management mechanism is tested with NetLogo simulation
software based on a software startup policy control. The experiments results
showed high untrusted software detection rate, which proved that the mechanism
developed runs effectively. The experiments are completed with Intel(R)

1374

Pentuim(R) 2.90G, 4G RAM, and Win7. Table 1 shows the experimental
parameters in details.

Table 1 The simulation parameters

Within a set period of time, the number of the software to be detected is m and
the initial credibility is 60%. The proportion of untrusted software in the
software library over time is as follows:

Fig.4. Detection efficiency of white list mechanism

Conclusion

The white list security management mechanism for software installment is
developed base on trusted computing technology, which is an active protection
defense mechanism. All software will be dynamically measured by such
mechanism to check their integrity to protect them from tampering, modifying
and changing. The simulation results proves that the mechanism could provide
high secure protection for software installment and operation, which will prevent
them from infected or destroyed by malicious program or codes..

References

 Initial

 Parameters Description

Network N 100 Number of entities in the network environment

Environmental
parameters M

300

A snapshot of the number of group members

Algorithm parameters m The value 0 or 1,indicating whether the matching white
list

1375

[1] Masoom Alam, Xinwen Zhang, Mohammad Nauman, Model-based
Behavioral Attestation [A]. Proceedings of 13th ACM symposium on
Access control models and technologies[C], New York: ACM Press,
2008:175-184.

[2] Masoom Alam, Xinwen Zhang, Mohammad Nauman, Tamleek Ali.
Behavioral Attestation for Web Services (BA4WS)[A]. Proceedings of
the 2008 ACM workshop on Secure web services[C], New
York :ACM, 2008:21-28.

[3] Masoom Alam, Mohammad Nauman, Xinwen Zhang, Tamleek Ali, Patrick
C.K. Hung. Behavioral Attestation for Business Processes (BA4BP)[A].
Proceedings of 2009 IEEE International Conference on Web Services[C],
IEEE Press, 2009:343-350.

[4] Mohammad Nauman, Masoom Alam, Xinwen Zhang, and Tamleek Ali.
Remote Attestation of Attribute Updates and Information Flows in a UCON
System[A]. Proceedings of the 2nd International Conference on Trusted
Computing[C], Berlin, Heidelberg: Springer-Verlag, 2009:63-80.

[5] Clark Weissman. Security Controls in the ADEPT-50 Time Sharing
System[A]. Proceedings of the 1069 AFIPS Fall Joint Computer
Conference[C], AFIPS Press, 1969:119-133.

[6] E. I. Organick. The Multics System: An Examination of Its Structure[M].
Cambridge, Mass. MIT Press, 1972.

[7] National Computer Security Center. Final Evaluation Report of Multics[R].
MR11.0, CSC-EPL-85/003, Ft. George G. Meade, MD, 1985.

[8] Vito B. L. D, Palmquist P. H, et al. Specification and Verification of the
ASOS Kernel[A]. Proceedings of the 1990 IEEE Computer Society
Symposium on Research in Security and Privacy[C], Oakland,
California, 1990:61-74.

[9] Waldhart N. A. The Army Secure Operating System[A]. Proceedings of the
1990 IEEE Computer Society Symposium on Research in Security and
Privacy[C]. Oakland, California, 1990:50-60.

[10] Blotcky, K. Lynch, S Lipner. SE/VMS: Implementing Mandatory Security
in VAX/VMS[A]. Proceedings of the 9th National Computer Security
Conference. Gaithersburg[C], Md. National Bureau of Standards,
1986:47-54.

[11] B. Pfitzmann, J. Riordan, et al. The PERSEUS System Architecture[R].
IBM Technical Report NO.93381, IBM Research Division, Zurich, 2001.

[12] Secure Computing Corporation. Assurance in the Fluke Microkernel: Final
Report[R]. CDRL Sequence NO.A002, Secure Computing Corporation,
1999.

[13] Secure Computing Corporation. DTOS Lessons Learned Report[R]. CDRL
Sequence No.A008, Secure Computing Corporation, Rosevile, Minnesota,
1997.

[14] Secure Computing Corporation. DTOS Generalized Security Policy
Specification [R]. DTOS CDRL A019, Secure Computing Corporation,
Roseville, Minnesota, 1997.

1376

[15] A. L. Peter, D. S. Stephen. Integrating Flexible Support for Security Policies
into the Linux Operating System[R]. NSA and NAI labs, 2001. [16] Intel.
LaGrande: Technology Architectural Overview[R]. Intel White Paper, Intel,
2003.

[17] G. David. LaGrande Architecture[R]. Intel White Paper, Intel, SCMS-18,
2003.

[18] Microsoft, Microsoft Next-Generation Secure Computing Base: An
Overview[EB/OL], http://www.micro
soft.com/resource/ngscb/ngscb_overview.mspx, 2003-4-1.

[19] P. England, B. Lampson, et al. A Trusted Open Platform[J]. IEEE Computer,
2003,36(7): 55-62.

[20] R. S. Sandhu, E. Coyne, et al. Role-Based Access Control Models[J]. IEEE
Computer, IEEE Press, 1996:29(2):38-47.

[21] H. Mantel, D. Sands. Controlled declassification based on intransitive
non-interference[A]. Proceedings of APLAS[C], 129-145, 2004.

[22] J Park. Towards usage control models: beyond traditional access control [A].
Proceedings of seventh ACM symposium on Access control models[C],
ACM Press, 2002.

[23] L. Badger, D. F. Swme, et al. Practical domain and type enforcement for
UNIX [A]. Proceedings of IEEE Symposium on Security and Privacy[C],
1995: 66-77.

[24] Safford D, Zohar M. A trusted Linux client[A]. Proceedings of 2004 Annual
Computer Security Applications Conference[C], Hilton Tucson, 2004.

[25] Ahmed M. Azab, Peng Ning, Emre C. Sezer, Xiaolan Zhang. HIMA: A
Hypervisor-Based Integrity Measurement Agent[A]. In Proceedings of
the 25th Annual conference on Computer Security
Applications[C], Piscataway NJ:IEEE, 2009:461-470.

[26] Lionel Litty, H. Andres Lagar-Cavilla, David Lie. Hypervisor Support for
Identifying Covertly Executing Binaries[A]. Proceedings of the 17th
conference on Security Symposium[C]. Berkeley: USENIX, 2008:243-258.

1377

	Baohua Zhao1,a, Hao Zhang2,a, Hao Guo1,a, Yue Qi2,a
	1 China Electric Power Research Institute, Beijing 100192, China
	2 State Grid JIBEI Electric Power Company Limited, Beijing 100053, China
	aemail: cuizhanhua@163.com
	Abstract
	A security management mechanism with white list is proposed based on trusted computing technology. The mechanism runs dynamic measurements to verify their integrity when the software or the program starts, which is an active defense mechanism based on...
	Keywords: Trusted Computing; White List; Dynamic Measurement

