

Design and Implementation of Data Version
Management Strategy Foresight in STM

Ying Liua, Fuxiang Gaob, Xin Sun
College of Information Science and Engineering, Northeastern University,
110819 Shenyang Liaoning, China
aemail: liuying@ise.neu.edu.cn, bemail:gaofuxiang@ ise.neu.edu.cn

Abstract

First of all, several data version management strategies in software transactional
memory have been studied in this paper, and both advantages and disadvantages
are analyzed. Then a novel data version management strategy named Foresight in
software transactional memory is put forward. Its design idea and detailed
implementation is given. And its performance is tested in RSTM. The results
show that as a data version management strategy Foresight has lower abort rate
than any other data version management strategy. As we known, the low abort
rate is beneficial to improve system performance. So the data version
management strategy Foresight can help improve the whole performance of the
software transactional memory system.
Keywords: Software Transactional Memory; RSTM; Data Version Management

Introduction

Referring to the concept of transaction in database, transactional memory is
used to solve the problems in the parallel processing instead of the locks and
semaphores. Each thread that can be executed in parallel would be processed as a
transaction, and this can reduce the complexity of programming. Transactions
here have three characteristics, atomicity, serializability, and isolation. Among
them, atomicity means that a transaction should be executed completely and
committed, or aborted and recovered back to the state before executing. This
characteristics have played the same role in parallel processing as locks.
According to this rule, in its execution processing, the thread should announce
the beginning of the transaction, execute a series of operations, and commit this
transaction. At present, transactional memory has become a new research issue
in multi-core parallel processing.

An integral transactional memory system must have three key functions, data
version management[1], conflict detection and conflict resolution Among the
three functions, data version management is the basis of all functions. All the
historical data for each stage should be saved completely to keep the system's
atomicity. In this paper, we focus on the data version management strategies, and
put forward a novel data version management strategy called Foresight. Its

International Symposium on Computers & Informatics (ISCI 2015)

© 2015. The authors - Published by Atlantis Press 1524

design idea and implementation is given in detail. Finally, software transactional
memory system, RSTM, is chosen as the experiment environment. And the
experimental data have shown that using this adaptive data version management
strategy abort rate can be lower, and the performance of the whole system can be
improved.

Study on Data Version Management Strategies

Overview
For software transactional memory systems, Herlihy et al proposed the first

dynamic software transactional memory system DSTM in 2003. The granularity
for DSTM to access data is object. Firstly data is encapsulated into objects in a
transaction. When the transaction accesses a data object, a corresponding data
object replica will be produced. And change will happen to this replica. There is
a special object to record the addresses of the new and old versions [2]. When the
transaction is committed, the address of the data will be replaced by the replica.

Another typical software transactional memory system is RSTM [3]. There are
many library implementations in RSTM. One of RSTM libraries, et, its
granularity is word. So the value of the address should be exchanged into
read/write set in words. And the read/write process can be executed according to
the rule such as Eager or Lazy [4]. There are three combinations for the
read/write process, Eager-Eager, Eager-Lazy, Lazy-Lazy [5]. The programmers
can decide which strategy to set.

Although RSTM has all the data version management strategies and can
switch according to the specific environment to improve efficiency. But it still
needs the programmers to decide to choose which kind of data version
management strategy. There is no dynamic data version management strategy in
the software transactional memory system. Therefore we design an adaptive data
version management strategy to improve the system performance according to
the specific environment. And it has been implemented in RSTM.
Analysis

The data version management strategies Eager and Lazy both have advantages
and disadvantages. For data version management strategy Eager, the modified
data (new data) would be saved in the address where they are stored, while the
unmodified data (old data) would be saved in the log. The transaction updates
the values of variables directly, and commits. It deletes the records in the log
when committing. This strategy can reduce the time delay. Once it aborts, the
transaction will return to the state before transaction happened according to the
records in the log. But in strategy Eager, all the write set of the transaction would
be locked when committing or aborting. So the earlier they are stored, the longer
the other conflict transactions will delay. The existing Eager data version
management strategies like LogTM, OneTM, LogTM-SE, cannot reduce the
isolation window to the minimum. They must write the old value into the
undo-log in private space before updating the new value. And they must recover
the old value when aborting. This leads to the extra operations of load and store
when each transaction writing. The isolation window may be larger for

1525

introducing the software method, which would introduce the conflict. Meanwhile,
the operations of reading the old value and storing it into undo-log need two
more caches, which would cause unnecessary consumption. So in the strategy
Eager, storing the old values by software method will reduce the performance,
and waste a lot of time before releasing the access permission.

The strategy Lazy must include the changed states in the hardware buffer, and
submit them to the memory. This will bring two main problems.

The first one is committing delay. The old values are stored in the original
addresses, while the new ones are stored in the buffer which is slower. The
operation of commit is regular operation, but it’s slower than the operation of
abort. That will cause a lot of unnecessary overhead.

The other problem is the limit memory space that will make the new values
overflow in the hardware buffer.

Data Version Management Strategy Foresight

The core of the data version management strategy Foresight is to track
historical information of the transaction executing before and analyze these
historical information by algorithms. Then the strategy decides which data
version management strategy is suitable to execute the transaction by the
selector.

There are four structures to decide to choose which data version management
strategy.

The first structure is Transaction State Register (TSR). TSR is used to record
the characteristic information of executing transactions currently. The part of
TSR address is used to store the addresses of read/write set on memory. The
parts of TSR commits and aborts are used to store the times of committing
successfully and aborting for each transaction. The part of TSR strategy is used
to store the data version management strategy for the transaction.

The second structure is History Execute Table (HET). HET is used to present
the information of the transactions before. It includes several statistical data and
address information used to store the addresses of read/write set on memory. The
part of HET lem is used to present the execute strategy of the last committing
instance of the transaction. The part of HET retc is used to track whether this
address had been aborted. It can be computed by algorithm according to the parts
of TSR commits and aborts.

The third structure is Write Version Management Seletor (WVMS). When a
transaction writes, WVMS will decide to choose which data version management
strategy to execute the write operation. WVMS can set the strategy by the data
from HET.

The fourth structure is Read Version Management Selector (RVMS). When a
transaction reads, RVMS will decide to choose which data version management
strategy to execute the read operation. RVMS can set the strategy by the data
from HET.

The data transfer relationship among the structures is shown in Figure 1.

1526

Fig. 1 Data Transfer Relationship among Structures

When a new transaction begins, VMS can compute the results for current
transaction to decide which data version management strategy according to the
retc of HET and the commits and aborts of TSR.

In the process of transaction executing, when writing, WVMS is called to
decide which data version management strategy for this write operation by the
information of HET and TSR. If the WVMS decides to choose Eager-Eager for
current transaction write operation, the address will be locked which means the
information of this address is being used and can't be modified by other read or
write operations. The old value will be written into the undo-log, while the new
value will be written into the memory. If the WVMS decides to choose
Eager-Lazy for current transaction's operation writing, the address will be locked
which means the information of this address is being used and can't be modified
by other read or write operations. The new value will be written into the redo-log.
The lock will be released until the transaction committing. If the WVMS decide
to choose Lazy-Lazy for current transaction operation writing, the new value can
be written into redo-log directly. While the old value will be remained in original
address, and unchanged.

When the transaction commits or aborts, update the information commits and
aborts by the specific condition. If a transaction is committed completely, HET
should be updated by computing the retc using the commits and aborts of TSR.

Performance Evaluation

1527

To test the performance of the data version management strategy Foresight,
we choose a series of benchmarks in RSTM for strategy Foresight. These
benchmarks include RBTree, LinkedList, Dlist, and LFUCache.

With data version management strategies, Eager-Eager (ee), Eager-Lazy (el),
Lazy-Lazy (ll) and Foresight (a), the abort rates are shown in Figure2.

Fig. 2. Abort Rates for Different Strategies

The ability of pick the ball robot has reached theoretical calculation expected.
The experiment started with no the institutions, the ball can not very well joint
with pick cue, causing pick the ball dynamics change range is very large, and
pick the ball height and the average of the theoretical calculation of the distance
is smaller than the calculated assumption the height and distance.

After the ball add tape loading agencies, institutions force the ball the
reverse spin, the ball close to pick the cue, pick the ball transfer fully energy to
the ball, pick the ball effect is obvious stable. But it is found that the actual pick
the ball after add tape loading agencies less than the theory calculated average
distance.

Conclusion

The experiment shows that after running all kinds of benchmarks, the abort
rate is reduced significantly by using data version management strategy
Foresight, comparing with Eager-Eager, Eager-Lazy, Lazy-Lazy. The results
prove that strategy Foresight has better performance than others. So using this
adaptive data version management strategy can get lower abort rate than any
other strategy. And the low abort rate is beneficial to improve system
performance. So this would improve the system performance.

References

[1] Liu Ying, Gao Fuxiang. Research of Conflict Detection Algorithm in
STM[J]. Journal of Northeastern University, 2013, 34(6) 774-777.

1528

[2] Herlihy M, Luchangco V , Moir M, et al. Software transactional memory
for dynamic-sized data structures [C]. Boston,MA: Proc 22nd Annual
Symposium on Principles of Distributed Computing, 2003, 92-101.

[3] Information on http://www.cs.rochesteredu/research/synchronization/rstm/

[4] Lihang Zhao, Woojin Choi, and Jeff Draper. SEL-TM: Selective
Eager-Lazy Management for Improved Concurrency in Transactional Memory
[C], Proceedings of the 26th international parallel & distributed processing
symposium, 2012, 1530-2075.

[5] Zhao L, Draper J: On the Correctness of Mixing Lazy and Eager Version
Management in Transactions [C], Parallel and Distributed Processing
Symposium Workshops & PhD Forum, 2012, 2534-2537.

1529

	Ying Liua, Fuxiang Gaob, Xin Sun
	College of Information Science and Engineering, Northeastern University, 110819 Shenyang Liaoning, China
	aemail: liuying@ise.neu.edu.cn, bemail:gaofuxiang@ ise.neu.edu.cn
	Abstract
	First of all, several data version management strategies in software transactional memory have been studied in this paper, and both advantages and disadvantages are analyzed. Then a novel data version management strategy named Foresight in software tr...
	Keywords: Software Transactional Memory; RSTM; Data Version Management

