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Abstract 

This paper presents the scheduling prob-
lem with multi-resource sharing, which 
each operation may need more than one 
kinds of resource. Timed Petri net is used 
to formulate this problem to analyze 
deadlock and minimize the makespan. A 
deadlock avoidance policy addressed here 
consists of three stages: The first stage is 
deadlock detection based on transitive 
matrix and circular waiting. The second 
one is deadlock recovery by adding new 
arcs to destroy deadlock. The last stage is 
deadlock-free design. The efficiency of 
the method proposed in this paper is illus-
trated by an example in the end. 

Keywords: Petri net, JSP, Deadlock 
Avoidance, Transitive matrix 

1. Introduction 

Job-shop scheduling problems (JSP) 
can be stated as follows: there are a finite 
set of n jobs, each job which consists of a 
chain of operations, and a finite set of m 
machines and some other resources, such 
as workers and AGVs, which are able to 
process at most one operation at a time. 
Each operation requires one or more than 

one resource, but at most one unit of each 
type of resource. Each resource can proc-
ess at most one operation at a time, and 
each operation must be processed during 
an uninterrupted time on some given re-
sources. The purpose is to find a schedule, 
that is, a reasonable allocation of the op-
erations to time intervals to machines or 
other resources such that the makespan is 
minimal. The allocation of resources has 
to be considered for the modeling and 
functioning of JSP systems, which is a 
challenge for a system designer, espe-
cially in multi-resource sharing system. 

Petri nets have been extensively used 
to model and analyze discrete event sys-
tems including JSP [1]-[4]. It is useful for 
preventing and avoiding unexpected sys-
tem behaviors, such as deadlock and ca-
pacity overflow. Siphon are mainly tech-
nology on deadlock analysis [3]-[4]. 
Some scheduling algorithms are also used 
to get a feasible scheduling, such as heu-
ristic scheduling algorithm and dynamic 
programming approach [5]-[6]. 

Transitive matrix of Petri net is an-
other strategy to analyze deadlock [7]. 
The entries of place transitive matrix de-
scribe the transferring relation from one 
place to another place through transitions. 
Deadlock structures, deadlock avoidance 
method are given in [8]-[9]. The theorems 
above have been extensively studied to 
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prevent deadlock and analyze the proper-
ties of Petri nets. However, the composi-
tional system that shares common re-
sources could not grab much attention of 
the researchers, especially for multi-
resources sharing system.   

In this paper, timed Petri net is ad-
dressed to model the JSP with multi-
resources sharing. Deadlock conditions 
are analyzed by place transitive matrix 
and a deadlock recovery method is intro-
duced to construct a deadlock-free system.  

This paper is organized as follow. The 
next section introduces system modeling 
by timed Petri net. In Section 3, some ba-
sic knowledge about deadlock is pre-
sented. Deadlock avoidance is stated in 
Section 4 based on deadlock detection 
and recovery. Section 5 describes a case 
study about JSP. Some conclusive re-
marks are presented in section 6. 

2. Timed Petri Net Modeling 

The notations used in this paper are 
mostly taken from [1], [9]-[10]. 
Definition 1 A Timed Petri net (TPN) is a 
6-tuple (N, M0) = (P, T, I, O, M0, τ), 
where P is a finite set of places; T is a fi-

nite set of transitions and PÇT =  and 

PÈT ¹ ; I: TP is the input function, 

a set of directed arcs from places to tran-
sitions, I (tj) is the set of input place of tj; 
O: TP is the output function, a set of 
directed arcs from transitions to places, O 
(tj) is the set of output place of tj; M0 is 
the initial marking. τ is a time function τ: 
T→N (N is the set of positive integers), 
which is associated to transitions such 
that tT, τ (t) = n represents the firing 
time of transition t. 
Definition 2 piP and tjT, A place pi 
is an input place of transition tj if piI(tj) 
and pi is an output place of transition tj, if 
piO(tj). Denote the weight of directed 
arc (pi, tj) as # (pi, I(tj)), and the weight of 
directed arc of (tj, pi) as # (pi, O(tj)). 

Definition 3 B-[i, j] is the matrix of input 
function with m rows and n columns, 
where B-[i, j]= #(pi, I(tj)); B+[i, j] is the 
matrix of output function with m rows 
and n columns, where B+[i, j] = #(pi,O(tj)). 
B=B+-B- is called incidence matrix. 
Definition 4 Let LP be place transitive 
matrix and let LV be transition transitive 
matrix with m rows and m columns, 
where LP = B-(B+)T and LV = (B+)TB-. The 
labeled place transitive matrix LVP is a m 

´ m matrix satisfying: LVP = B- diag(t1, 

t2, …, tn) (B+)T , where the elements of 
LVP describe the direct transferring rela-
tion from one place to another through 
one or more transitions. The Weighted 
place transitive matrix is denoted as LVP

*, 
If a transition tk appears s times in the 
same column of LVP, then replace tk in LVP 
by tk/s in LVP

*, otherwise the elements in 
LVP

* are the same as LVP. 
Definition 5 Consider two Petri nets (N1, 
M10) = (P1, T1, I1, O1, M10) and (N2, M20) 
= (P2, T2, I2, O2, M20), where P1P2 = R 

¹ . Let (N, M0) = (P, T, I, O, M0) be 

composed from (N1, M10) and (N2, M20) 
by operation place fusion. Then the ele-
ments in (N, M0) are defined as follows: P 
= P1∪P2, T = T1∪T2, I = I1∪I2, O = 
O1∪O2 and  
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Each job will be a small Petri net with 
a unique path of transitions and places. 
Each operation in a job corresponds to a 
transition t, and the input (output) place 
of transition t is an operation place P that 
can be interpreted as the start (end) of the 
operation. The resource places are 
connected to the transitions which 
operations require these resources. 
Moreover, for each resource occupied by 
some operation t, when it is not used by 
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the next operation, this resource can be 
released after operation t finished.  

When the operations are ready to 
implement or the resources are available, 
there will be tokens in those places. 
Moreover, the original (final) state of 
each job corresponds to the initial 
marking M0 (final marking Mf) of the 
Petri net model. The whole model is got 
by common place merging, and this n 
jobs’ scheduling problem is converted to 
find a firing sequence in the resultant 
Petri net model to get a deadlock-free 
system in order to calculate the makespan. 

3. Deadlock Analysis 

Some definitions about deadlock used 
in next section are presented here. 
3.1. Some Notations about Deadlock 

A transition is said to be a dead 
transition at marking M if M is not the 
final marking Mf and there is no 
reachable marking to make transition t 
enable. Formally, transition t is a dead 

transition:  M R (N, M0)  (M¹ Mf), 

t  T : ⌐ M [t > , then. 
Since our modeling method is based 

on the composite designing, the “circular 
waiting” discussed in this paper is 
between two tasks. In manufacturing 
system, “circular waiting” is said to be a 
state that for two tasks, each of them hold 
a machine but both of them are waiting 
for the second machine occupied by the 
other. It is one condition of deadlock in 
manufacturing system. 

In Petri net, “circular waiting” can be 
demonstrated as, for Petri net Ni (i =1, 2), 
r1 and r2 are resource places in Ni and tia 
tib tic tid (i =1, 2) is sub-transition path 
which is associated with resource places, 
where N1 satisfies: r1 is associated with 
the pairs of transitions (t1a, t1c) and (t1b, 
t1d), and r1• = t1a , •r1 = t1c and r2• = t1b , 
•r2 = t1d ; N2 satisfies: r1 is associated 
with the pairs of transitions (t2a, t2c) and 

(t2b, t2d), and r1• = t2b , •r1= t2d and r2• = 
t2a , • r2= t2c .  

Deadlock occurs when there are dead 
transitions that cause “circular waiting” 
in the system. A net is said to be 
deadlock-free if and only if there is no 
deadlock in the system. 
3.2. Transformation of Marking 

In this sub-section, the notation about 
transformation equation [7]-[9] and the 
improved form on JSP are presented here.  
The transformation of marking is defined 
as MR(k+1)T = M(k)T LVP

*, where MR(k+1) 
is a m-vector of nonnegative integer and 
is a reachable marking from M(k) = [p1(k), 
p2(k), …, pm(k)]T, LVP

* is the weighted 
place transitive matrix [9]. At a state M(k), 
If ti fires, we define | ti | = 1; and if there 
is a token in pi at M(k),define  | pi (k)| = 1. 

The transformation equation shows 
the flow relation of a token in pi(k) from 
M(k) to MR(k+1) by the weighted place 
transitive matrix. In this equation, if 

*

i ji VP
i

p L  is integer, then let * 1
i ji VP

i

p L  , 

which means pi(k) can be transferred 
from M(k) to MR(k+1); otherwise, if 

*

i ji VP
i

p L  is not integer, 

let
*

0
i ji VP

i

p L  , which means pi(k) can 

not be transferred from M(k) to MR(k+1) 
[9]. 

However, MR(k+1) only presents the 
flow relation of tokens, it may not neces-
sary correspond to M(k+1). In order to 
improve this situation, we add some con-
strained conditions to this equation: 

(1) When *

i ji VP
i

p L is integer, e.g. 

* 1
i ji VP

i

p L   in M(k+1), then token can be 

transferred from M(k) to M(k+1);  
(2) If *

i ji VP
i

p L is not inte-

ger,
*

0
i ji VP

i

p L   in M(k+1), then token 

can’t be transferred; 
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(3) The token of place pi in condi-
tion (2) which is not the same as place in 
condition (1) is not changed; 

(4) The token in other place is the 
same as MR(k+1). 

From this calculation we can find 
out a series of reachable marking from M0. 
In addition, if there is no reachable mark-
ing at Mi, the next reachable marking cal-
culated will be the same as Mi. Thus we 
can find out whether a marking is reach-
able or not from M0. 

4. Deadlock Avoidance Method 

Deadlock detecting algorithm is 
addressed to find out deadlock in the 
compositional system by merging two 
small Petri nets with shared resources. 
Algorithm I: Deadlock Detection 
Input: N1 = (P1R, T1, F1, M10, τ1), N2 = 
(P2R, T2, F2, M20, τ2), the Initial 
marking M10, M20 and the final marking 
M1f, M2f. 
Output: Deadlock or not 
Step 1: Do place merging on Ni and Nj, 
and then generate a net N with the initial 
marking M0 and the finial marking Mf. 
Step 2: Construct the weighted place 
transitive matrix-LVP

* for compositional 
net N. 
Step 3: For k = 0, k < n, k ++ 

Calculate the next marking MR(k+1) 
from the marking MR(k) by MR(k+1)T = 
M(k)T LVP

* 
If MR is equal to Mf, stop, output 

“There is no deadlock in the net, wecan 
get the makespan”. 

else if there are dead transitions and 
these dead transitions construct a 
“circular waiting” structure, then output 
“There is a deadlock, we should do 
deadlock recovery on the model”. 

else output “There are mistakes in 
the system model”. 

If deadlock occurs, the system falls 
into global deadlock and stops running. 
Therefore, deadlock recovery is important 

in system design. Since deadlock is 
caused by “circular waiting”, if we 
destroy the “circular waiting” structure, 
deadlock will disappear and the system 
will be deadlock-free. Therefore, a 
recovery method is proposed using “self-
loop” to destroy “circular waiting” 
structure in this subsection. 

Consider, N1 and N2 are two Petri net 
models with shard places r1 and r2. They 
satisfy the “circular waiting” conditions 
mentioned in section 3.1. Suppose i = ti0 

ti1 …tim is a transition path in Ni, i’ = tia 
tib tic tid is a sub-transition path of i (i = 
{1, 2}), and # (ti0 ti1 …ti(a-1)) is the 
makespan of ti0 ti1 …ti(a-1) . 
Algorithm II: Deadlock Recovery 
Input: Dead transitions which cause 
deadlock, suppose they are t1b and t1b’. 
Output: A recovery model 
Step 1: Compare # ( t10 t11 … t1(a-1) ) and # 
( t20 t21 … t2(a-1) ) and find out the greater 
quantity, without loss the generality, 
suppose it is # ( t10 t11 … t1(a-1) ).  
Step 2: Add two new arcs t1(b-1)  r1 and 
r1  t1b into the model, then the pair (t1a, 
t1c) is decomposed as (t1a, t1(b-1)) and (t1b, 
t1c) which are both associating with r1. 
Step 3: Deadlock detection by algorithm I.  

If output is “There is a 
deadlock”, do the recovery similarly as 
Step1 and Step2. 

else, there is no deadlock, stop. 
After the recovery given above, the 

sub-system becomes deadlock-free. The 
method proposed above only change the 
input and output of a resource place in 
one sub-Petri net. If the complexity of the 
model is not considered, we can do the 
similar change in the second sub-Petri net, 
and the Petri net model may be live and 
the makespan will be minimized at a time. 
4.1. Deadlock-free Method 

The deadlock detection and recovery 
algorithm are mainly for a compositional 
system with two small Petri nets sharing 
common resources. For an n jobs Petri 
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nets system, we do deadlock detection 
and recovery on each pair of Petri nets. 
Then do place merging on these n Petri 
nets and a deadlock-free modeling is got. 
The makespan of the scheduling can be 
calculated by simulations on CPN-Tool. 

5. A Case Study 

An example with two jobs and two 
kinds of resources is shown in Table 2 in 
order to describe the technology of 
deadlock detection and recovery. 

 
Table 2: A Job Shop Scheduling Problem 

 O1 O2 O3 O4 
J1 M1: 7 M1, M2: 4 M1, M2: 3 M2: 4 
J2 M2: 3 M1, M2: 5 M1, M2: 4 M1: 3 

 
In order to get the scheduling, we 

solve this problem gradually: 
Step 1: System model 

Fig.2 depicts the Petri nets for two 
jobs, and ti1, ti2, ti3, ti4 are corresponding 
to the four operations in job i (i = {1, 2}), 
r1 and r2 are corresponding to the two 
resources. The initial marking of job i is 
Mi0 = (1, 0, 0, 0, 0, 1, 1) T and the final 
marking is Mif = (0, 0, 0, 0, 1, 1, 1) T. 

 

       
Fig.2. Petri nets models  Fig.3. Place fusion 
 
Step 2: Deadlock detection 
• Do place merging on the common 

resources places r1 and r2 : 
Fig.3 is the compositional system for 

this problem, the initial marking of the 
merging system M0 = (1, 0, 0, 0, 0, 1, 0, 0, 
0, 0, 1, 1) T and the final marking Mf = (0, 
0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1) T. 

• Construct the weighted place 
transitive matrix-LVP

* :  
Table 3 is the weighted place 

transitive matrix of Fig.3, M(k)=[p11(k), 
p12(k), p13(k), p14(k), p15(k), p21(k), p22(k), 
p23(k), p24(k), p25(k), r1(k), r2(k)]T and the 
initial marking is M0 = (1, 0, 0, 0, 0, 1, 0, 
0, 0, 0, 1, 1) T.  

 
Table 3: LVP

* of Petri net in Fig.3 
11 11

12 12

13 13 13

14 14 14

15

21 21*

22 22

23 23 23

24 24 24

25

1 11 22

2

0 2 0 0 0 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0
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 
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Calculate the reachable marking by 

transformation of marking: MR(k+1)T = 
M(k)T LVP

* : 
The next reachable marking is:  

M1 = M0 LVP
* = [0, p11 (t11/2) + r1 (t11/2), 

r2 (t12/2), 0, 0, 0, p21 (t21/2) + r2 (t21/2), r1 
(t22/2), 0, 0, 0, 0]T = [0, 1, 0, 0, 0, 0, 1, 0, 
0, 0, 0, 0]T, then  
M2 = M1 LVP

* = [0, 0, p12 (t12/2), 0, 0, 0, 0, 
p22 (t22/2), 0, 0, 0, 0]T = [0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0]T 

In M2, transitions t12 and t22 are dead 
transitions connected to resource places r1 
and r2, which involve “circular waiting”. 
Then the system is confronted a deadlock. 
Step 3: Deadlock recovery 
• Since (# t11 = 7)>(# t21 = 3), the first 

sub-model will be modified; 
Add two arcs t11  r1 and r1  t12 to 

get a recovery model in Fig.4.; 
• Deadlock detection again and there is 

no deadlock, stop. 
When there are more than two jobs, 

deadlock detection and recovery should 
be implemented in each two jobs to make 
sure each sub-system deadlock-free. Then 
a deadlock-free compositional model can 
be built by place fusion. 
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Fig.4.The recovery mode 

 
Step 4: Scheduling resolution 

Based on the algorithms above, the 
system is deadlock-free. The makespan of 
this JSP is 30, and the Gantt chart is 
shown in Fig.5. 

 

 
Fig.5. Gunter chart of the scheduling 

6. Conclusion   

In this paper, deadlock avoidance 
method in JSP with multi- resources 
sharing is considered by timed Petri nets. 
Place transitive matrix is applied to detect 
deadlock. A deadlock recovery strategy is 
introduced based on “self-loop”. 
However, the work focuses on deadlock 
caused by two tasks. Our future work will 
do some deeply research in a more 
complex system, which deadlock is 
caused by more than three tasks with 
more kinds of shared resources. 
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