
Deadlock Avoidance of a Kind of JSP with Multi-resources
Sharing *

Jing Li, Hejiao Huang , Farooq Ahmad
Dept. of Computer Science and Technology, Harbin Institute of Technology Shenzhen

Graduate School, China

{hjhuang@hitsz.edu.cn; lijing@hitsz.edu.cn; farooq190@ hotmail.com}

* This work was financially supported by National Natural Science Foundation of China with Grant
No. 10701030.

Abstract

This paper presents the scheduling prob-
lem with multi-resource sharing, which
each operation may need more than one
kinds of resource. Timed Petri net is used
to formulate this problem to analyze
deadlock and minimize the makespan. A
deadlock avoidance policy addressed here
consists of three stages: The first stage is
deadlock detection based on transitive
matrix and circular waiting. The second
one is deadlock recovery by adding new
arcs to destroy deadlock. The last stage is
deadlock-free design. The efficiency of
the method proposed in this paper is illus-
trated by an example in the end.

Keywords: Petri net, JSP, Deadlock
Avoidance, Transitive matrix

1. Introduction

Job-shop scheduling problems (JSP)
can be stated as follows: there are a finite
set of n jobs, each job which consists of a
chain of operations, and a finite set of m
machines and some other resources, such
as workers and AGVs, which are able to
process at most one operation at a time.
Each operation requires one or more than

one resource, but at most one unit of each
type of resource. Each resource can proc-
ess at most one operation at a time, and
each operation must be processed during
an uninterrupted time on some given re-
sources. The purpose is to find a schedule,
that is, a reasonable allocation of the op-
erations to time intervals to machines or
other resources such that the makespan is
minimal. The allocation of resources has
to be considered for the modeling and
functioning of JSP systems, which is a
challenge for a system designer, espe-
cially in multi-resource sharing system.

Petri nets have been extensively used
to model and analyze discrete event sys-
tems including JSP [1]-[4]. It is useful for
preventing and avoiding unexpected sys-
tem behaviors, such as deadlock and ca-
pacity overflow. Siphon are mainly tech-
nology on deadlock analysis [3]-[4].
Some scheduling algorithms are also used
to get a feasible scheduling, such as heu-
ristic scheduling algorithm and dynamic
programming approach [5]-[6].

Transitive matrix of Petri net is an-
other strategy to analyze deadlock [7].
The entries of place transitive matrix de-
scribe the transferring relation from one
place to another place through transitions.
Deadlock structures, deadlock avoidance
method are given in [8]-[9]. The theorems
above have been extensively studied to

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 1

prevent deadlock and analyze the proper-
ties of Petri nets. However, the composi-
tional system that shares common re-
sources could not grab much attention of
the researchers, especially for multi-
resources sharing system.

In this paper, timed Petri net is ad-
dressed to model the JSP with multi-
resources sharing. Deadlock conditions
are analyzed by place transitive matrix
and a deadlock recovery method is intro-
duced to construct a deadlock-free system.

This paper is organized as follow. The
next section introduces system modeling
by timed Petri net. In Section 3, some ba-
sic knowledge about deadlock is pre-
sented. Deadlock avoidance is stated in
Section 4 based on deadlock detection
and recovery. Section 5 describes a case
study about JSP. Some conclusive re-
marks are presented in section 6.

2. Timed Petri Net Modeling

The notations used in this paper are
mostly taken from [1], [9]-[10].
Definition 1 A Timed Petri net (TPN) is a
6-tuple (N, M0) = (P, T, I, O, M0, τ),
where P is a finite set of places; T is a fi-

nite set of transitions and PÇT =  and

PÈT ¹ ; I: TP is the input function,

a set of directed arcs from places to tran-
sitions, I (tj) is the set of input place of tj;
O: TP is the output function, a set of
directed arcs from transitions to places, O
(tj) is the set of output place of tj; M0 is
the initial marking. τ is a time function τ:
T→N (N is the set of positive integers),
which is associated to transitions such
that tT, τ (t) = n represents the firing
time of transition t.
Definition 2 piP and tjT, A place pi
is an input place of transition tj if piI(tj)
and pi is an output place of transition tj, if
piO(tj). Denote the weight of directed
arc (pi, tj) as # (pi, I(tj)), and the weight of
directed arc of (tj, pi) as # (pi, O(tj)).

Definition 3 B-[i, j] is the matrix of input
function with m rows and n columns,
where B-[i, j]= #(pi, I(tj)); B+[i, j] is the
matrix of output function with m rows
and n columns, where B+[i, j] = #(pi,O(tj)).
B=B+-B- is called incidence matrix.
Definition 4 Let LP be place transitive
matrix and let LV be transition transitive
matrix with m rows and m columns,
where LP = B-(B+)T and LV = (B+)TB-. The
labeled place transitive matrix LVP is a m

´ m matrix satisfying: LVP = B- diag(t1,

t2, …, tn) (B+)T , where the elements of
LVP describe the direct transferring rela-
tion from one place to another through
one or more transitions. The Weighted
place transitive matrix is denoted as LVP

*,
If a transition tk appears s times in the
same column of LVP, then replace tk in LVP
by tk/s in LVP

*, otherwise the elements in
LVP

* are the same as LVP.
Definition 5 Consider two Petri nets (N1,
M10) = (P1, T1, I1, O1, M10) and (N2, M20)
= (P2, T2, I2, O2, M20), where P1P2 = R

¹ . Let (N, M0) = (P, T, I, O, M0) be

composed from (N1, M10) and (N2, M20)
by operation place fusion. Then the ele-
ments in (N, M0) are defined as follows: P
= P1∪P2, T = T1∪T2, I = I1∪I2, O =
O1∪O2 and










)(),(max{

)(

)(

)(

2010

20

10

0

pMpM

pM

pM

pM

Rp

Pp

Pp





2

1

Each job will be a small Petri net with
a unique path of transitions and places.
Each operation in a job corresponds to a
transition t, and the input (output) place
of transition t is an operation place P that
can be interpreted as the start (end) of the
operation. The resource places are
connected to the transitions which
operations require these resources.
Moreover, for each resource occupied by
some operation t, when it is not used by

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 2

the next operation, this resource can be
released after operation t finished.

When the operations are ready to
implement or the resources are available,
there will be tokens in those places.
Moreover, the original (final) state of
each job corresponds to the initial
marking M0 (final marking Mf) of the
Petri net model. The whole model is got
by common place merging, and this n
jobs’ scheduling problem is converted to
find a firing sequence in the resultant
Petri net model to get a deadlock-free
system in order to calculate the makespan.

3. Deadlock Analysis

Some definitions about deadlock used
in next section are presented here.
3.1. Some Notations about Deadlock

A transition is said to be a dead
transition at marking M if M is not the
final marking Mf and there is no
reachable marking to make transition t
enable. Formally, transition t is a dead

transition:  M R (N, M0)  (M¹ Mf),

t  T : ⌐ M [t > , then.
Since our modeling method is based

on the composite designing, the “circular
waiting” discussed in this paper is
between two tasks. In manufacturing
system, “circular waiting” is said to be a
state that for two tasks, each of them hold
a machine but both of them are waiting
for the second machine occupied by the
other. It is one condition of deadlock in
manufacturing system.

In Petri net, “circular waiting” can be
demonstrated as, for Petri net Ni (i =1, 2),
r1 and r2 are resource places in Ni and tia
tib tic tid (i =1, 2) is sub-transition path
which is associated with resource places,
where N1 satisfies: r1 is associated with
the pairs of transitions (t1a, t1c) and (t1b,
t1d), and r1• = t1a , •r1 = t1c and r2• = t1b ,
•r2 = t1d ; N2 satisfies: r1 is associated
with the pairs of transitions (t2a, t2c) and

(t2b, t2d), and r1• = t2b , •r1= t2d and r2• =
t2a , • r2= t2c .

Deadlock occurs when there are dead
transitions that cause “circular waiting”
in the system. A net is said to be
deadlock-free if and only if there is no
deadlock in the system.
3.2. Transformation of Marking

In this sub-section, the notation about
transformation equation [7]-[9] and the
improved form on JSP are presented here.
The transformation of marking is defined
as MR(k+1)T = M(k)T LVP

*, where MR(k+1)
is a m-vector of nonnegative integer and
is a reachable marking from M(k) = [p1(k),
p2(k), …, pm(k)]T, LVP

* is the weighted
place transitive matrix [9]. At a state M(k),
If ti fires, we define | ti | = 1; and if there
is a token in pi at M(k),define | pi (k)| = 1.

The transformation equation shows
the flow relation of a token in pi(k) from
M(k) to MR(k+1) by the weighted place
transitive matrix. In this equation, if

*

i ji VP
i

p L is integer, then let * 1
i ji VP

i

p L  ,

which means pi(k) can be transferred
from M(k) to MR(k+1); otherwise, if

*

i ji VP
i

p L is not integer,

let
*

0
i ji VP

i

p L  , which means pi(k) can

not be transferred from M(k) to MR(k+1)
[9].

However, MR(k+1) only presents the
flow relation of tokens, it may not neces-
sary correspond to M(k+1). In order to
improve this situation, we add some con-
strained conditions to this equation:

(1) When *

i ji VP
i

p L is integer, e.g.

* 1
i ji VP

i

p L  in M(k+1), then token can be

transferred from M(k) to M(k+1);
(2) If *

i ji VP
i

p L is not inte-

ger,
*

0
i ji VP

i

p L  in M(k+1), then token

can’t be transferred;

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 3

(3) The token of place pi in condi-
tion (2) which is not the same as place in
condition (1) is not changed;

(4) The token in other place is the
same as MR(k+1).

From this calculation we can find
out a series of reachable marking from M0.
In addition, if there is no reachable mark-
ing at Mi, the next reachable marking cal-
culated will be the same as Mi. Thus we
can find out whether a marking is reach-
able or not from M0.

4. Deadlock Avoidance Method

Deadlock detecting algorithm is
addressed to find out deadlock in the
compositional system by merging two
small Petri nets with shared resources.
Algorithm I: Deadlock Detection
Input: N1 = (P1R, T1, F1, M10, τ1), N2 =
(P2R, T2, F2, M20, τ2), the Initial
marking M10, M20 and the final marking
M1f, M2f.
Output: Deadlock or not
Step 1: Do place merging on Ni and Nj,
and then generate a net N with the initial
marking M0 and the finial marking Mf.
Step 2: Construct the weighted place
transitive matrix-LVP

* for compositional
net N.
Step 3: For k = 0, k < n, k ++

Calculate the next marking MR(k+1)
from the marking MR(k) by MR(k+1)T =
M(k)T LVP

*
If MR is equal to Mf, stop, output

“There is no deadlock in the net, wecan
get the makespan”.

else if there are dead transitions and
these dead transitions construct a
“circular waiting” structure, then output
“There is a deadlock, we should do
deadlock recovery on the model”.

else output “There are mistakes in
the system model”.

If deadlock occurs, the system falls
into global deadlock and stops running.
Therefore, deadlock recovery is important

in system design. Since deadlock is
caused by “circular waiting”, if we
destroy the “circular waiting” structure,
deadlock will disappear and the system
will be deadlock-free. Therefore, a
recovery method is proposed using “self-
loop” to destroy “circular waiting”
structure in this subsection.

Consider, N1 and N2 are two Petri net
models with shard places r1 and r2. They
satisfy the “circular waiting” conditions
mentioned in section 3.1. Suppose i = ti0

ti1 …tim is a transition path in Ni, i’ = tia
tib tic tid is a sub-transition path of i (i =
{1, 2}), and # (ti0 ti1 …ti(a-1)) is the
makespan of ti0 ti1 …ti(a-1) .
Algorithm II: Deadlock Recovery
Input: Dead transitions which cause
deadlock, suppose they are t1b and t1b’.
Output: A recovery model
Step 1: Compare # (t10 t11 … t1(a-1)) and #
(t20 t21 … t2(a-1)) and find out the greater
quantity, without loss the generality,
suppose it is # (t10 t11 … t1(a-1)).
Step 2: Add two new arcs t1(b-1)  r1 and
r1  t1b into the model, then the pair (t1a,
t1c) is decomposed as (t1a, t1(b-1)) and (t1b,
t1c) which are both associating with r1.
Step 3: Deadlock detection by algorithm I.

If output is “There is a
deadlock”, do the recovery similarly as
Step1 and Step2.

else, there is no deadlock, stop.
After the recovery given above, the

sub-system becomes deadlock-free. The
method proposed above only change the
input and output of a resource place in
one sub-Petri net. If the complexity of the
model is not considered, we can do the
similar change in the second sub-Petri net,
and the Petri net model may be live and
the makespan will be minimized at a time.
4.1. Deadlock-free Method

The deadlock detection and recovery
algorithm are mainly for a compositional
system with two small Petri nets sharing
common resources. For an n jobs Petri

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 4

nets system, we do deadlock detection
and recovery on each pair of Petri nets.
Then do place merging on these n Petri
nets and a deadlock-free modeling is got.
The makespan of the scheduling can be
calculated by simulations on CPN-Tool.

5. A Case Study

An example with two jobs and two
kinds of resources is shown in Table 2 in
order to describe the technology of
deadlock detection and recovery.

Table 2: A Job Shop Scheduling Problem

 O1 O2 O3 O4
J1 M1: 7 M1, M2: 4 M1, M2: 3 M2: 4
J2 M2: 3 M1, M2: 5 M1, M2: 4 M1: 3

In order to get the scheduling, we

solve this problem gradually:
Step 1: System model

Fig.2 depicts the Petri nets for two
jobs, and ti1, ti2, ti3, ti4 are corresponding
to the four operations in job i (i = {1, 2}),
r1 and r2 are corresponding to the two
resources. The initial marking of job i is
Mi0 = (1, 0, 0, 0, 0, 1, 1) T and the final
marking is Mif = (0, 0, 0, 0, 1, 1, 1) T.

Fig.2. Petri nets models Fig.3. Place fusion

Step 2: Deadlock detection
• Do place merging on the common

resources places r1 and r2 :
Fig.3 is the compositional system for

this problem, the initial marking of the
merging system M0 = (1, 0, 0, 0, 0, 1, 0, 0,
0, 0, 1, 1) T and the final marking Mf = (0,
0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1) T.

• Construct the weighted place
transitive matrix-LVP

* :
Table 3 is the weighted place

transitive matrix of Fig.3, M(k)=[p11(k),
p12(k), p13(k), p14(k), p15(k), p21(k), p22(k),
p23(k), p24(k), p25(k), r1(k), r2(k)]T and the
initial marking is M0 = (1, 0, 0, 0, 0, 1, 0,
0, 0, 0, 1, 1) T.

Table 3: LVP

* of Petri net in Fig.3
11 11

12 12

13 13 13

14 14 14

15

21 21*

22 22

23 23 23

24 24 24

25

1 11 22

2

0 2 0 0 0 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0

VP

p t

p t

p t t

p t t

p

p t
L

p t

p t t

p t t

p

r t t

r



12 21

2 0 0 0 0

0 0 2 0 0 0 2 0 0 0 0 0t t

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Calculate the reachable marking by

transformation of marking: MR(k+1)T =
M(k)T LVP

* :
The next reachable marking is:

M1 = M0 LVP
* = [0, p11 (t11/2) + r1 (t11/2),

r2 (t12/2), 0, 0, 0, p21 (t21/2) + r2 (t21/2), r1
(t22/2), 0, 0, 0, 0]T = [0, 1, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0]T, then
M2 = M1 LVP

* = [0, 0, p12 (t12/2), 0, 0, 0, 0,
p22 (t22/2), 0, 0, 0, 0]T = [0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0]T

In M2, transitions t12 and t22 are dead
transitions connected to resource places r1
and r2, which involve “circular waiting”.
Then the system is confronted a deadlock.
Step 3: Deadlock recovery
• Since (# t11 = 7)>(# t21 = 3), the first

sub-model will be modified;
Add two arcs t11  r1 and r1  t12 to

get a recovery model in Fig.4.;
• Deadlock detection again and there is

no deadlock, stop.
When there are more than two jobs,

deadlock detection and recovery should
be implemented in each two jobs to make
sure each sub-system deadlock-free. Then
a deadlock-free compositional model can
be built by place fusion.

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 5

Fig.4.The recovery mode

Step 4: Scheduling resolution

Based on the algorithms above, the
system is deadlock-free. The makespan of
this JSP is 30, and the Gantt chart is
shown in Fig.5.

Fig.5. Gunter chart of the scheduling

6. Conclusion

In this paper, deadlock avoidance
method in JSP with multi- resources
sharing is considered by timed Petri nets.
Place transitive matrix is applied to detect
deadlock. A deadlock recovery strategy is
introduced based on “self-loop”.
However, the work focuses on deadlock
caused by two tasks. Our future work will
do some deeply research in a more
complex system, which deadlock is
caused by more than three tasks with
more kinds of shared resources.

7. Reference

[1] J. L. Peterson, “Petri Net Theory and
the Modeling of System”, Prentice
Hall, (1981).

[2] H.J. Huang, L. Jiao and T.Y. Cheung,
“Property-preserving subnet reducti-
ons for designing manufacturing

systems with shared resources”,
Theoretical Computer Science,
332(1-3): 461-485(2005).

[3] Hesuan Hu, Zhiwu Li and Anrong
Wang, “On the optimal set of
elementary siphons in Petri nets for
deadlock control in FMS”, 2006
IEEE International Conference of
Networking, Sensing and Control, pp.
244-247(2006).

[4] Zhiwu Li and Na Wei, “Deadlock
control of flexible manufacturing
systems via invariant-controlled
elementary siphons of Petri nets”,
The International Journal of
Advanced Manufacturing Technology,
Vol. 33, pp. 24-35(2007).

[5] Xu Gang and Wu Zhiming, “A kind
of deadlock-free scheduling method
based on Petri net”, IEEE HASR’02,
pp. 195-200(2002).

[6] Kim Y., Tatsuya T., and Taysuo N.,
“FMS scheduling based on timed
Petri net model and reactive graph
search”, Applied Mathematical
Modelling, Vol.31, pp.955-970(2007).

[7] Liu J., Itoh Y., Miyazawa I. and
Sekiguchi T., “A research on Petri net
properties using transitive matrix”,
Proceeding IEEE SMC99, pp. 888-
893(1999).

[8] Yujin. Song and Jongkun. LEE,
“Deadlock analysis of Petri nets using
the transitive matrix”, SICE Annual
Conference 2002, Osaka, (2002).

[9] Sanghwan Kim, Sangho Lee and
Jongkun Lee, “Deadlock analysis of
Petri nets nased on the reousrce share
places relationship”, IMACS
multiconference on CESA, pp. 59-
64(2006).

[10] Murata T, “Petri net: properties,
analysis, and applications”, Proc
IEEE, Vol. 77, pp. 541-580(1985).

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 6

