Countable compactness in generalized L-topological spaces

Shi-Zhong Bai^{1,a}, Yi Shi^{1,b}
¹School of Mathematics and Computational Science, Wuyi University, Guangdong, China
^ashizhongbai@aliyun.com, bsymathematics@163.com

Abstract.

In this paper, the generalized countable L-compact sets and generalized Lindelöf sets are introduced in generalized L-topological spaces, based on the notion of generalized L-compactness. They are described by cover form and finite intersection property. They are preserved under generalized L-continuous mapping, inherited for L-closed subsets, and finitely additive. And an L-subset is generalized L-compact if and only if it is generalized Lindelöf and generalized countably L-compact.

Keywords: generalized L-topology, generalized countable L-compactness, generalized Lindelöf set

1. Introduction and Preliminaries

In[2],Bai introduced the concept of generalized L-topological spaces, and studied the basic concepts and basic properties in generalized L-topological spaces. Following the lines of [2], in [3], Bai introduced generalized L-compactness. In this paper, our aim is to continue the research of generalized countable L-compact sets and generalized Lindelöf sets in generalized L-topological spaces.

Throughout this paper, $(L, \vee, \wedge, ')$ is a completely distributive De Morgan algebra and X is a nonempty set. L^X is the set of all L-fuzzy sets on X. The smallest element and the largest element of L^X will be denoted by 0 and 1 respectively. The set of non-unit prime elements [4] in L is denoted by pr(L). The set of nonzero co-prime elements [4] in L and L^X is denoted by

M(L) and $M^*(L)$ respectively. Clearly, $r \in pr(L)$ iff $r' \in M(L)$. The greatest minimal family of a in L is denoted by $\beta(a)$. The greatest maximal family of a in L is denoted by $\alpha(a)$ [5,8]. Moreover for a in L, define $\beta^*(a) = \beta(a) \cap M(L)$ and $\alpha^*(a) = \alpha(a) \cap pr(L)$. For each $\psi \subset L$, we define $\psi' = \{A' : A \in \psi\}$. For $r \in L$, $\varepsilon_r(A) = \{x \in X : A(x) \ge r\}$.

Definition 1.1.[2]. Let L be a completely distributive De Morgan algebra, X be a nonempty set and δ be a collection of subsets of L^X . Then δ is called a generalized L-topology (briefly GL-t) on X if $0 \in \delta$ and $G_i \in \delta$ for $i \in I \neq \emptyset$ implies $G = \bigvee_{i \in I} G_i \in \delta$. We call the pair (L^X, δ) a generalized L-topological space (briefly GL-ts) on X. The element of δ are called generalized L-open sets (briefly GL-open sets) and the complements are called generalized L-closed sets (briefly GL-closed sets). We say δ is strong if $1 \in \delta$.

Definition 1.2.[6]. Each mapping $f: X \to Y$ induces a mapping $f_L^{\to}: X \to Y$ (called an L-valued Zadeh function or an L-fuzzy mapping or an L-forward power set operator), which is defined by $f_L^{\to}(A) = \vee \{A(x) | f(x) = y\} \quad (\forall A \in L^X \,,\, y \in Y) \quad \text{.The right adjoint}$

to f_L^{\rightarrow} (called L-backward power set operator) is denoted f_L^{\leftarrow} and given by $f_L^{\leftarrow}(B) = \bigvee \{A \in L^X \, \big| \, f_L^{\rightarrow}(A) \leq B \} = B \circ f \ (\forall B \in L^X)$.

Definition 1.3.[2]. Let(L^X , δ) and(L^Y , τ) be two GL-ts's and $f^{\to}:L^X\to L^Y$ an L-fuzzy mapping. f^{\to} is called a generalized L-continuous mapping (briefly GL-continuous mapping) if $f^{\leftarrow}(B)\in \delta$ for each $B\in \tau$.

Definition1.4[2]. Let(L^X , δ) be a GL-ts and $x_\lambda \in M^*(L^X)$. $A \in \delta'$ is

/

called a generalized L- closed remote-neighborhood(briefly GLC-RN)of x_{λ} ,if $x_{\lambda} \leq A$. $B \in L^{X}$ is called a generalized L-remote-neighborhood(briefly GL-RN)of x_{λ} if there is a GLC-RN A of x_{λ} such that $B \leq A$. The set of all GLC-RNs(GL-RNs)of x_{λ} is denoted by $\eta^{-}(x_{\lambda})$ ($\eta(x_{\lambda})$).

Definition 1.5[2]. Let(L^X , δ)be a GL-ts, $A \in L^X$ and $\alpha \in M(L)$. $\phi \subset \delta'$ is called an α -closed -remote neighborhood family of A (briefly α -C-RF of A) if for each x_α in A, there exists a $P \in \phi$ such that $P \in \eta(x_\alpha)$. ϕ is called an α -C-RF of A.

Definition 1.6[2]. Let(L^X , δ) be a GL-ts and $A \in L^X$. A is called generalized L-compact(briefly GL-compact) if every α -C-RF ϕ of A has a finite subfamily which is an α^- -C-RF of A ($\alpha \in M(L)$). (L^X , δ) is called GL-compact if 1_X is GL-compact.

2.Generalized countable L-compactness

Definition 2.1. Let (L^X, δ) be a GL-ts and $A \in L^X$. A is called generalized countably L-compact if every countable α -C-RF ϕ of A has a finite subfamily which is an α^- -C-RF of A ($\alpha \in M(L)$).(L^X ,

 δ)is called generalized countably L-compact if $\mathbf{1}_{\mathbf{X}}$ is generalized countably L-compact.

From the Definitions 2.1 and 1.6 we immediately obtain the following results.

Corollary 2.2. Every generalized L-compact set is generalized countably L-compact.

Definition 2.3. Let (L^X, δ) be a GL-ts, $A \in L^X$ and $r \in pr(L)$. $\mu \subset \delta$ is called an r-cover of A if

for each $x \in \mathcal{E}_{r'}(A)$, there exists an $U \in \mu$ such that $U(x) \leq r$. μ is called an r^+ -cover of A if there exists a $t \in \alpha^*(r)$ such that μ is a t-cover of A.

Theorem2.4. Let (L^X, δ) be a GL-ts and $r \in pr(L)$. $A \in L^X$ is generalized countably L-compact if and only if every countable r-cover μ of A has a finite subfamily ν which is an r^+ -cover of A.

Proof. Let A be generalized countably L-compact, μ a countable r -cover of A and $r \in pr(L)$. Put

 $\phi=\mu'$,then $\phi\subset \mathcal{S}'$ and for each $x\in \mathcal{E}_{r'}(A)$ there exists a $Q=U'\in \phi$ such that $U(x)\leq r$,i.e. $r'\leq Q(x)$.

Since $r \in pr(L)$, $r' \in M(L)$. By $x_{r'} \leq Q$ we have $Q \in \eta(x_{r'})$, hence ϕ is a countable r'-C-RF of A. Since A is generalized countably L-compact, there is a finite subfamily v of μ such that $\psi = v'$

is an $(r')^-$ -C-RF of A ,i.e.for some $t \in \beta^*(r')$ and each $x \in \mathcal{E}_{r'}(A)$,there is a $V(x) \in \mathcal{V}$ such that $t \leq V'(x)$,equivalently,for some $t' \in \alpha^*(r)$ and each $x \notin \mathcal{E}_{r'}(A)$,there is a $V(x) \in \mathcal{V}$ such that $V(x) \leq t'$. Thus μ has a finite subfamily ν which is an r^+ -cover of A.

Conversely, suppose every countable r-cover μ of A has a finite subfamily is an r^+ -cover of A. Let ϕ be a countable α -C-RF of A, $\mu = \phi'$ and $r = \alpha'$. Since $\alpha \in M(L)$, $r \in pr(L)$. With the method of dual above, it is easily to prove that μ is a countable r-cover of A. Suppose v is a finite subfamily of

 μ such that ν is an r^+ -cover of A. Put $\psi = \nu'$, then ψ is an α^- -C-RF of A. Thus A is generalized countably L-compact.

Definition 2.5. Let (L^X, δ) be a GL-ts, $A \in L^X$, $r \in pr(L)$ and $\mu \subset L^X$. If for every finite subfamily

 ν of μ and for each $t \in \alpha^*(r)$, there is an $x \in \mathcal{E}_{t'}(A)$ such that $(\wedge \nu)(x) \geq t'$, then we say that μ has an

 r^+ -finite intersection property in A.

Theorem2.6. Let (L^X, δ) be a GL-ts and $r \in pr(L)$. $A \in L^X$ is generalized countably L-compact if and only if every countable subfamily of GL-closed sets μ has an r^+ -finite intersection property in A, and there is an $x \in \mathcal{E}_{r'}(A)$ such that $(\wedge \mu)(x) \geq r'$.

Proof. Let A be generalized countably L-compact. Suppose there is a prime element $e \in pr(L)$ and

Some countable subfamily of GL-closed sets μ has an e^+ -finite intersection property in A ,for each x

 $\in \mathcal{E}_{r'}(A)$ such that $(\wedge \mu)(x) \ge e'$. Then there exists a $B \in \mu$ such / that $B(x) \ge e'$, i.e. $B'(x) \le e$. This

shows μ' is a countable e -cover of A .By the Theorem2.4,there is a finite subfamily $\nu = \{B_1, \dots, B_n\}$

of μ such that ν' is an e^+ -cover of A. Hence for some $t \in \alpha^*(e)$ and each $x \in \mathcal{E}_{r'}(A)$, there is an $B_i \in \nu$

such / that $\mathcal{B}'_i(x) \leq t$.And/so $(\vee_{i=1}^n B'_i)(x) \leq t$,i.e. $(\wedge \nu)(x) = (\wedge_{i=1}^n B_i)(x) \geq t'$,which contradicts that μ has an e^+ -finite intersection property in A.

Conversely,let μ be a countable r -cover of A and $r \in pr(L)$.If none of the finite subfamily ν of μ

is r^+ -cover of A ,then every $t\in\alpha^*(r)$ there is an $x\in\mathcal{E}_{r'}(A)$ such that $C(x)\leq t$ for each $C\in\mathcal{V}$.And so

 $(\vee \nu)(x) \le t$, equivalently, $(\wedge \nu')(x) \ge t'$. This shows that subfamily of GL-closed sets μ' having an

 r^+ -finite intersection property in A. Hence there is an $x \in \mathcal{E}_{r'}(A)$ such that $(\wedge \mu')(x) \geq r'$, i.e. $(\vee \mu)(x)$

 $\leq r$. This implies that μ is not a countable r -cover of A ,a contradiction. By the Theorem 2.4, A is generalized countably L-compact.

Theorem2.7. Let (L^X, δ) be a GL-ts and $A, B \in L^X$.If A is generalized countably L-compact and

 $B \in \mathcal{S}'$, then $A \wedge B$ is generalized countably L-compact.

Proof. Let $\phi \subset \mathcal{S}'$ be a countable α -C-RF of $A \wedge B$ ($\alpha \in M(L)$). Then $\phi_1 = \phi \cup \{B\}$ is a countable α -C-RF of A. In fact, for each $x_\alpha \in B$ then $x_\alpha \in A \wedge B$. Hence, there is $P \in \phi \subset \phi_1$ such that $P \in \eta(x_\alpha)$. If $x_\alpha \notin B$, then $B \in \phi$ and $B \in \eta(x_\alpha)$. Thus, ϕ_1 is indeed a countable α -C-RF of A. Since A is generalized countably L-compact. there exists an $r \in \beta^*(\alpha)$ and finite subfamily ψ_1 of ϕ_1 such that ψ_1 is an r-C-RF of A. Let $\psi = \psi_1 - \{B\}$, then ψ is a finite subfamily of ϕ , and ψ is an r-C-RF of $A \wedge B$. In fact, $x_r \in A \wedge B$, then $x_r \in A$, from the definition of ψ_1 , there is $P \in \psi_1$, with $P \in \eta_1(x_r)$. But $x_r \in B$, so $P \neq B$, and thus $P \in \psi_1 - \{B\} = \psi$. Hence, $A \wedge B$ is generalized countably L-compact.

Theorem 2.8. If A and B are generalized countably L-compact in GL-ts

 (L^X, δ) , then $A \vee B$ is generalized countably L-compact.

Proof. This is analogous to the proof of the theorem4.1(2) in [3].

Theorem2.9. Let (L^X, δ) and (L^Y, τ) be two GL-ts's, $f^{\to}: L^X \to L^Y$ a GL-continuous mapping and A a generalized countable L-compact set in (L^X, δ) . Then $f^{\to}(A)$ is generalized countable L-compact in (L^Y, τ) .

Proof. Let $\phi \subset \tau'$ be a countable α -C-RF of $f^{\rightarrow}(A)$ and $x_{\alpha} \in A(\alpha \in M(L))$. To begin with, let us show that $f^{\leftarrow}(\phi) = \{f^{\leftarrow}(P) : P \in \phi\}$ a countable α -C-RF of A . Since f^{\rightarrow} is GL-continuous and $x_{\alpha} \in A$, $f^{\leftarrow}(\phi) \subset \delta'$ and $f^{\rightarrow}(x_{\alpha}) = (f^{\rightarrow}(x))_{\alpha} \leq f^{\rightarrow}(A)$. By ϕ is a countable α -C-RF of $f^{\rightarrow}(A)$, there is a $P \in \phi$ with $P \in \eta((f^{\rightarrow}(x))_{\alpha})$, i.e. $(f^{\rightarrow}(x))_{\alpha} \leq P$, or, equivalently, $P(f^{\rightarrow}(x)) \geq \alpha$. By the definition of inverse mapping, $f^{\leftarrow}(P)(x) = P(f^{\rightarrow}(x)) \geq \alpha$, hence $x_{\alpha} \notin f^{\leftarrow}(P)$, i.e. $f^{\leftarrow}(P) \in \eta(x_{\alpha})$.

Therefore $f^{\leftarrow}(\phi)$ is a countable α -C-RF of A.

Since A is generalized countably L-compact,there exists an $r \in \beta^*(\alpha)$ and a finite subfamily ψ of ϕ such that $f^{\leftarrow}(\psi)$ is an r-C-RF of A. Again, by the generalized countable L-compactness of A, there exists an $r_1 \in \beta^*(r)$ and a finite subset ψ_1 of $f^{\leftarrow}(\psi)$ such that ψ_1 is an r_1 -C-RF of A. Obviously we can take $\psi_1 = f^{\leftarrow}(\psi)$.

Now we will show that ψ is an r-C-RF of $f^{\rightarrow}(A)$. Let $y_r \leq f^{\rightarrow}(A)$; by the Lemma 4.10 [8], $r = \sup\{\lambda \in L : \exists x \in f^{\leftarrow}(y), A(x) \geq \lambda and \lambda \leq r\}$. Since $r_1 \in \beta^*(r)$, we have $r_1 \in \beta(r)$ and hence there is a $\lambda \in L$ and $x \leq f^{\leftarrow}(y)$ with $A(x) \geq \lambda$, $\lambda \leq r$, and $\lambda \geq r_1$; thus $x_{r_1} \leq A$. It follows from $f^{\leftarrow}(\psi)$ is an r-C-RF of A that there is a $P \in \psi$ with $f^{\leftarrow}(P) \in \eta(x_{r_1})$, i.e. $f^{\leftarrow}(P)(x) \geq r_1$. Hence $P(y) = P(f^{\rightarrow}(x)) \not\geq r_1$ and $f^{\rightarrow}(A)$ is generalized countably GL-compact.

Corollary 2.10. Let (L^X, δ) be a countable L-compact space and $f: (L^X, \delta) \to (L^Y, \tau)$ a surjective GL-continuous mapping. Then (L^Y, τ) is generalized countably L-compact.

3.Generalized Lindelöf sets

Definition 3.1. Let (L^X, δ) be a GL-ts and $A \in L^X$. A is called generalized Lindelöf sets if every α -C-RF ϕ of A has a countable subfamily which is an α^- -C-RF ϕ of A ($\alpha \in M(L)$). (L^X, δ) is called generalized Lindelöf space if 1_X is generalized Lindelöf.

From the Definitions 3.1 and 2.6 we immediately obtain the following results.

Theorem3.2. Let (L^X, δ) be a GL-ts and $A \in L^X$. Then A is generalized L-compact set if and only if A is generalized Lindelöf and generalized countably L-compact.

Analogous to generalized countable L-compactness,we have the following results.

Theorem3.3. Let (L^X, δ) be a GL-ts and $r \in pr(L)$. Then A is generalized Lindelöf set if and only if every r -cover μ of A has a countable subfamily ν which is an r^+ -cover of A.

Theorem3.4. Let (L^X, δ) be a GL-ts and $A, B \in L^X$.If A is generalized Lindelöf set and $B \in \delta'$,then

 $A \wedge B$ is generalized Lindelöf.

Theorem 3.5. If A and B is generalized Lindelöf sets in GL-ts (L^X, δ) , then $A \vee B$ is generalized Lindelöf.

Theorem3.6. Let (L^X, δ) and (L^Y, τ) be two GL-ts's, $f^{\to}: L^X \to L^Y$ a GL-continuous mapping and A a generalized Lindelöf set in (L^X, δ) . Then $f^{\to}(A)$ is generalized Lindelöf in (L^Y, τ) .

Corollary3.7. Let (L^X, δ) and (L^Y, τ) be a generalized Lindelöf set and $f: (L^X, \delta) \to (L^Y, \tau)$ a surjective GL-continuous mapping. Then (L^Y, τ) is generalized Lindelöf.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 11471202), the Natural Science Foundation of Guangdong Province (No.S2012010008833).

References

[1] S.Z. Bai:Countably compact L-sets,International Journal of Journal of Uncertainty,Fuzziness

and Knowledge-based Systems, 12(2004), p.115-121

[2] S.Z. Bai:Generalized L-topological spaces, Journal of Intelligent and Fuzzy Systems, in press.

DOI10.3233/IFS-141300.

[3] S.Z. Bai:Generalized compact L-subsets defined by α -closed-remote neighborhood family,

Journal of Intelligent and Fuzzy Systems,in press.

- [4] G.Gierz:et al.A Compendium of Continuous Lattices, Berlin: Springer, 1980.
- [5] Y.M.Liu, M.K.Luo:Fuzzy Topology, World Sci. Publishers, Singapore, 1998.
- [6] S.E.Rodabaugh: Point-set lattice-theoretic topology, Fuzzy Sets and Systems, 40(1991), p. 297-

345

- [7] G.J.Wang:A new fuzzy compactness defined by fuzzy nets,J.Math.Anal.Appl.,94 (1983),p.1-23
- [8] G.J.Wang:Theory of L-fuzzy Topological Spaces, Xi'an China:Shaanxi Normal University Press,1988. (in Chinese).