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Abstract.

In this paper, the generalized countable L-compact sets and generalized Lindel6f
sets are introduced in generalized L-topological spaces, based on the notion of
generalized L-compactness. They are described by cover form and finite
intersection property. They are preserved under generalized L-continuous
mapping, inherited for L-closed subsets, and finitely additive. And an L-subset is
generalized L-compact if and only if it is generalized Lindel6f and generalized

countably L-compact.
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1. Introduction and Preliminaries

In[2],Bai introduced the concept of generalized L-topological spaces, and
studied the basic concepts and basic properties in generalized L-topological
spaces. Following the lines of [2], in [3], Bai introduced generalized
L-compactness. In this paper, our aim is to continue the research of generalized
countable L-compact sets and generalized Lindel6f sets in generalized
L-topological spaces.

Throughout this paper, (L,v,A,")is a completely distributive De Morgan

algebra and X is a nonempty set. L* is the set of all L-fuzzy sets on X .The

smallest element and the largest element of L* will be denoted

by O and 1 respectively.The set of non-unit prime elements[4] in L is denoted

by pr(L).The set of nonzero co-prime elements[4] in L and L* is denoted by
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M(L) and M (L) respectively. Clearly, r € pr(L) iff r' € M (L) .The
greatest minimal family ofain L is denoted by /3(@).The greatest maximal
family of @ in L is denoted by «(@) [5,8]. Moreover for a in L, define
£ (@) =@ NM(L)anda (a) = ax(a) n pr(L) .For eachy < L ,we
definey’' ={A": Aey}.For relL, g (A)={xe X :A(X)>r}.
Definition1.1.[2]. Let L be a completely distributive De Morgan

algebra, X be a nonempty set and & be a collection of subsets of L* .Then & is

called a generalized L-topology (briefly GL-t)

onX if0edandG; e Sfori e | #JimpliesG = v, G, € 6 .We call the

iel

pair( L*,8 ) a generalized L-topological space (briefly GL-ts) on X .The
element of & are called generalized L-open sets (briefly GL-open sets)and the
complements are called generalized L-closed sets (briefly GL-closed sets).We
say o isstrongif 1€ o .

Definition1.2.[6]. Each mapping f:X —>Y  induces a

mapping f,” : X =Y (called an L-valued Zadeh function or an L-fuzzy
mapping or an L-forward power set operator),which is defined by
f(A) = v{A(X)| f(x)=y} (VAel*,yeY) .The right adjoint
to f_” (called L-backward power set operator)is denoted f = and given
by f,"(B) =v{Ae LX|f " (A)<B}=Bo f (VBel¥).
Definition1.3.[2]. Let( L*,5 )and( L',z )oe two GL-ts’s
and f7 L > L" an L-fuzzy mapping. f~ is called a generalized
L-continuous mapping(briefly GL-continuous mapping)if f < (B) € & for
eachBer.
Definition1.4[2]. Let(L*,5) be a GL-ts andX, e M (L) . Aed'is

/
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called a generalized L- closed remote-neighborhood(briefly

GLC-RN)of X, ,if X, <A . Bel® is called a generalized L-
remote-neighborhood(briefly GL-RN)of X, if there is a GLC-RN A of X, such

that B< A .The set of all GLC-RNs(GL-RNs)of X, is denoted

byn™(X,) (n(X,)).

Definition1.5[2]. Let( L*, 8 )be a
GL-ts, Ac L and a e M(L) . p = &' is called an o -closed -remote
neighborhood family of A (briefly cr -C-RF of A)if for each X, in A there exists
aPe¢ suchthatP en(x,).¢iscalledana™ -C-RF of A.

Definition1.6[2]. Let( L*,8 )be a GL-ts and Ae L* . A is called
generalized L-compact(briefly GL-compact)if every o -C-RF ¢ of A has a finite
subfamily whichisana ™ -C-RFof A(ax € M (L)).

(L*, 8)is called GL-compact if 1, is GL-compact.

2.Generalized countable L-compactness

Definition2.1. Let(L*,5) be a GL-ts and A e L* . Aliis called generalized
countably L-compact if every countable o -C-RF ¢ of A has a finite subfamily
whichisan & -C-RFof A(a € M (L)).(L*,

0 )is called generalized countably L-compact if 1, is generalized countably

L-compact.

From the Definitions 2.1 and 1.6 we immediately obtain the following
results.

Corollary 2.2. Every generalized L-compact set is generalized countably
L-compact.

Definition2.3. Let (L*,8) be a GL-ts, Ac L* andr e pr(L). £ c Sis
called an r-coverof A if
for each X € ¢,,(A) ,there exists anU € g such thatU (X) <r . g is called

anr " -cover of Aif there exists at € o~ (r) such that s is at -cover of A.

Theorem2.4. Let (L*,5) be a GL-ts and r € pr(L). A e L" is generalized
countably L-compact if and only if every countable I -cover  of A has a finite

subfamily v which is anr " -cover of A.
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Proof. Let Abe generalized countably L-compact, £ a countable I' -cover
of Aandr € pr(L) .Put
¢ = theng < &' and for each X € &, (A)there exists aQ =U" e ¢ such
thatU (X) <r jie.r' <Q(X).

Sincer € pr(L),r'e M(L) .By x,, <Q we have Q € (X,.) ,hence ¢ is a
countable '’ -C-RF of A .Since A is generalized countably L-compact,there is a
finite subfamily v of 4 such that w = v’

is an (r')"-C-RF of A i.e.for somete B (r')and each X € £, (A) there is
a¥(x)ev such that t<V'(x) equivalentlyfor some t'ea (r) and
each X £ £, (A) there is aV (X) € v such that V (X) <t’.Thus x has a finite
subfamily v which is an r " -cover of A.

Conversely,suppose every countable I -cover £ of A has a finite subfamily is
an r° -cover of A .Let ¢ be a countable «a -C-RF
of A,u=¢" andr =’ Sincea € M(L),r e pr(L) .With the method of
dual above,it is easily to prove that 1 is a countable I -cover of A .Suppose v is
a finite subfamily of
4 such that v is an r* -cover of A Puty =v' theny is an a  -C-RF
of A .Thus A is generalized countably L-compact.

Definition2.5. Let(L*,5)be a GL-ts, Ac L ,r e pr(L)and < L* .If
for every finite subfamily
v of 4 and for each tea (r) , there is an Xe&,(A) such
that (AV)(X) > 1’ then we say that « has an
I * -finite intersection property in A .

Theorem2.6. Let (L*,8) be a GL-tsand r € pr(L). A e L is generalized
countably L-compact if and only if every countable subfamily of GL-closed
sets 4 has an r" -finite intersection property in A ,and there is
anX € &, (A)such that (Az)(X) > 1",

Proof. Let A be generalized countably L-compact.Suppose there is a prime
elemente € pr(L)and
Some countable subfamily of GL-closed sets 4 has ane™ -finite intersection
property in A for each X
€&, (A) such that (Ap)(X)y=>e" .Then there exists a B ey such
that B(X) > €’ i.e. B'(X) < e.This
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shows 2" is a countable € -cover of A .By the Theorem2.4,there is a finite
subfamilyv ={B,,---, B}
of & such that v' is an " -cover of A .Hence for somet e a*(e) and
eachX € &, (A) thereisan B, e v
such /  that Bi(x) <t And/
so (Vi,B))(X) <t jie. (Av)(X)=(A{,B,)(X)>t" ,which contradicts
that 4 has an € " -finite intersection property in A.

Conversely,let £ be a countable I -cover of Aand r € pr(L) .If none of the
finite subfamily v of
is I'" -cover of A then every tea (r) there is an X €&, (A) such
that C(X) <t for eachC € v .And so
(vv)(x) <t equivalently, (Av')(X) >t" .This shows that subfamily of
GL-closed sets 4" having an
r -finite intersection property in A .Hence there is an X Sr,(A) such
that (A")(X) > 1" ie. (v ) (X)
<1 .This implies that £ is not a countable I -cover of A ,a contradiction.By the

Theorem2.4, A is
generalized countably L-compact.

Theorem2.7. Let (L*,8) be a GL-ts and A,B € L* .If Ais generalized
countably L-compact and
B € &' then AA B is generalized countably L-compact.

Proof. Let ¢@gco be a countable  « -C-RF

of AAB (¢ € M(L)) .Theng, = ¢ U{B}is a countable & -C-RF of A..In
fact,for each X, € B then X, € AA B .Hencethere is P €@ c ¢, such
that P e n(x,) 1f X, ¢ B ;then B e g and B e (X, ) .Thus, @, is indeed a
countable & -C-RF of A .Since Ais generalized countably L-compact.there
exists anr € B (a) and finite subfamily y, of @, such thaty, is an I -C-RF
of A .Lety =y, —{B} theny is a finite subfamily of ¢ ,andy/ is anr -C-RF
of AAB.In fact, X, € AA B thenX, € A from the definition ofy/, there
is Pey, , with Pen(x,) But X,€B so P#B and
thus P € w, —{B} =y .Hence, A A B is generalized countably L-compact.
Theorem2.8. If A and B are generalized countably L-compact in GL-ts
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(L*,5),then Av B is generalized countably L-compact.
Proof. This is analogous to the proof of the theorem4.1(2) in [3].

Theorem2.9. Let (L*,8) and (L', 7) be two GL-ts’s, f 7 :L* —»L"a
GL-continuous mapping and A a generalized countable L-compact set
in(L*,8) .Then f ~ (A) is generalized countable L-compact in (L", 7).

Proof. Let pct’ be a countable a -C-RF
of f7(A) and X, € Al0 e M(L)) .To begin withlet us show

that T (@) ={f “(P):P e ¢} a countable &« -C-RF of A .Since f " is
GL-continuous d

an
X, eA, T (#)cd and F2(x,)=(f(x), < (A By g is a

countable a -C-RF of f7(A) : there is
a Peg with Pen((f~(x)),) e (f~(x)), <P orequivalently,
P(f°(X)) >« By the definition of inverse
mapping, F (P)(X)=P(f7(X))>a ,hence x, e f“(P) e
fF(P)en(x,).

Therefore f (&) is a countable o -C-RF of A.

Since A is generalized countably L-compact,there exists anI € ﬂ* (@) and a
finite subfamily i/ of ¢ such that f () is anr -C-RF of A Againby the
generalized countable L-compactness of A there exists anT; € ﬂ*(r) and a
finite subsety, of f < () such thaty, is anr,-C-RF of A.Obviously we can
takey, = ().

Now we will show thaty is anr -C-RF of f 7 (A).Lety, < f 7 (A);by

the Lemma 410
8l r=sup{iel:3xe f(y),AX) > andA <r} Sincer, € B (r),
we have r e p(r) and hence there is

adelandx< fo(y)with A(X)= A, A<rand A>T thus X, <A It
follows from f“(w) s an r -C-RF of A that there s
aP ey with f “(P) en(x,) ie f(P)(X)=r Hence P(y) =

P(f7(X)zrn and / therefore

certainly P(y) >r ,ie. Pen(y,) .Thus f 7 (A) is generalized countably
GL-compact.
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Corollary2.10.  Let (Lx,é') be a countable L-compact space
and f:(LX,8)—>(L",7) a surjective GL-continuous

mapping.Then (LY ,T) is generalized countably L-compact.

3.Generalized LindelOf sets

Definition3.1. Let(L*,5) be a GL-ts and A e L* . Aliis called generalized
Lindelof sets if every @ -C-RF @ of Ahas a countable subfamily which is an
a -C-RFgof A(a e M(L)).(L*,8)is called generalized Lindelof space
if1, is generalized Lindelof.

From the Definitions 3.1 and 2.6 we immediately obtain the following results.

Theorem3.2. Let (L*,5) be a GL-ts and Ae L* .Then Ais generalized

L-compact set if and only if A is generalized Lindelof and generalized countably
L-compact.
Analogous to generalized countable L-compactness,we have the following

results.
Theorem3.3. Let(L*,5) be a GL-ts andr € pr(L).Then Ais generalized

Lindelof set if and only if every r -cover £ of A has a countable

subfamily v which is an r * -cover of A.
Theorem3.4. Let (L*,5) be a GL-ts and A,B € L* .If Ais generalized

Lindelf setand B € &' ,then
A A B is generalized Lindelof.

Theorem3.5. If A and B is generalized Lindeléf sets in

GL-ts(L*,5) then A v B is generalized Lindeldf.
Theorem3.6. Let (L*,8) and (L', 7) be two GL-ts’s, f 7 :LX - L"a
GL-continuous  mapping and A a generalized  Lindeléf  set

in(L,8) .Then f ~ (A) is generalized Lindelof in (L', 7) .
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Corollary3.7. Let (L*,5) and (L',7) be a generalized Lindel6f set
and f:(L*,0)—>(L",7) a surjective GL-continuous

mapping.Then (L', 7) is generalized Lindelof.
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