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Abstract.  

In this paper, the generalized countable L-compact sets and generalized Lindelöf 

sets are introduced in generalized L-topological spaces, based on the notion of 

generalized L-compactness. They are described by cover form and finite 

intersection property. They are preserved under generalized L-continuous 

mapping, inherited for L-closed subsets, and finitely additive. And an L-subset is 

generalized L-compact if and only if it is generalized Lindelöf and generalized 

countably L-compact. 
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1. Introduction and Preliminaries 
In[2],Bai introduced the concept of generalized L-topological spaces, and 

studied the basic concepts and basic properties in generalized L-topological 

spaces. Following the lines of [2], in [3], Bai introduced generalized 

L-compactness. In this paper, our aim is to continue the research of generalized 

countable L-compact sets and generalized Lindelöf sets in generalized 

L-topological spaces. 

Throughout this paper, ),,,( ′∧∨L is a completely distributive De Morgan 

algebra and X is a nonempty set. XL is the set of all L-fuzzy sets on X .The 

smallest element and the largest element of XL will be denoted 

by 0 and1respectively.The set of non-unit prime elements[4] in L is denoted 

by )(Lpr .The set of nonzero co-prime elements[4] in L and XL is denoted by 
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)(LM  and )(* LM  respectively. Clearly, )(Lprr ∈ iff )(LMr ∈′ .The 

greatest minimal family of a in L is denoted by )(aβ .The greatest maximal 

family of a in L is denoted by )(aa [5,8]. Moreover for a in L, define 

)()()(* LMaa ∩= ββ and )()()(* Lpraa ∩=aa .For each L⊂ψ ,we 

define }:{ ψψ ∈′=′ AA . For Lr ∈ , })(:{)( rxAXxAr ≥∈=ε . 

Definition1.1.[2]. Let L be a completely distributive De Morgan 

algebra, X be a nonempty set andδ be a collection of subsets of XL .Thenδ is 

called a generalized L-topology (briefly GL-t) 

on X if δ∈0 and δ∈iG for ∅≠∈ Ii implies δ∈∨= ∈ iIi GG .We call the 

pair( δ,XL ) a generalized L-topological space (briefly GL-ts) on X .The 

element ofδ are called generalized L-open sets (briefly GL-open sets)and the 

complements are called generalized L-closed sets (briefly GL-closed sets).We 

sayδ is strong if δ∈1 . 

Definition1.2.[6]. Each mapping YXf →: induces a 

mapping YXf L →→ : (called an L-valued Zadeh function or an L-fuzzy 

mapping or an L-forward power set operator),which is defined by 

})()({)( yxfxAAf L =∨=→ ),( YyLA X ∈∈∀ .The right adjoint 

to →
Lf (called L-backward power set operator)is denoted ←

Lf and given 

by fBBAfLABf L
X

L A=≤∈∨= →← })({)( )( XLB∈∀ . 

Definition1.3.[2]. Let( δ,XL )and( τ,YL )be two GL-ts’s 

and YX LLf →→ : an L-fuzzy mapping. →f is called a generalized 

L-continuous mapping(briefly GL-continuous mapping)if δ∈← )(Bf for 

each τ∈B . 

Definition1.4[2]. Let( δ,XL ) be a GL-ts and )(* XLMx ∈λ . δ ′∈A is 
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called a generalized L- closed remote-neighborhood(briefly 

GLC-RN)of λx ,if Ax ≤λ . XLB∈ is called a generalized L- 

remote-neighborhood(briefly GL-RN)of λx if there is a GLC-RN A of λx such 

that AB ≤ .The set of all GLC-RNs(GL-RNs)of λx is denoted 

by )( λη x− ( )( λη x ). 

Definition1.5[2]. Let( δ,XL )be a 

GL-ts, XLA∈ and )(LM∈α . δφ ′⊂ is called an α -closed -remote 

neighborhood family of A (brieflyα -C-RF of A )if for each αx in A ,there exists 

a φ∈P  such that )( αη xP∈ .φ is called an −α -C-RF of A .  

Definition1.6[2]. Let( δ,XL )be a GL-ts and XLA∈ . A is called 
generalized L-compact(briefly GL-compact)if everyα -C-RFφ of A has a finite 

subfamily which is an −α -C-RF of A ( )(LM∈α ). 

( δ,XL )is called GL-compact if X1 is GL-compact. 

2.Generalized countable L-compactness 

Definition2.1. Let ),( δXL be a GL-ts and XLA∈ . A is called generalized 
countably L-compact if every countableα -C-RFφ of A has a finite subfamily 

which is an −α -C-RF of A ( )(LM∈α ).( XL , 

δ )is called generalized countably L-compact if X1 is generalized countably 
L-compact. 

From the Definitions 2.1 and 1.6 we immediately obtain the following 
results. 

Corollary 2.2. Every generalized L-compact set is generalized countably 
L-compact. 

Definition2.3. Let ),( δXL be a GL-ts, XLA∈ and )(Lprr ∈ . δµ ⊂ is 
called an r -cover of A  if 
for each )(Ax r′∈ε ,there exists an µ∈U such that rxU ≤)( . µ is called 

an +r -cover of A if there exists a )(* rt α∈ such thatµ is a t -cover of A . 

Theorem2.4. Let ),( δXL be a GL-ts and )(Lprr ∈ . XLA∈ is generalized 
countably L-compact if and only if every countable r -coverµ of A has a finite 

subfamilyν which is an +r -cover of A . 
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Proof. Let A be generalized countably L-compact, µ a countable r -cover 
of A and )(Lprr ∈ .Put 

µφ ′= ,then δφ ′⊂ and for each )(Ax r′∈ε there exists a φ∈′=UQ such 
that rxU ≤)( ,i.e. )(xQr ≤′ . 

Since )(Lprr ∈ , )(LMr ∈′ .By Qxr ≤′ we have )( rxQ ′∈η ,henceφ is a 
countable r ′ -C-RF of A .Since A  is generalized countably L-compact,there is a 
finite subfamilyν ofµ such that νψ ′=  

is an −′)(r -C-RF of A ,i.e.for some )(* rt ′∈ β and each )(Ax r′∈ε ,there is 

a ν∈)(xV such that )(xVt ′≤ ,equivalently,for some )(* rt α∈′ and 

each )(Ax r′∈ε ,there is a ν∈)(xV such that txV ′≤)( .Thusµ has a finite 

subfamilyν which is an +r -cover of A . 
Conversely,suppose every countable r -coverµ of A has a finite subfamily is 

an +r -cover of A .Let φ be a countable α -C-RF 
of A , φµ ′= and α ′=r .Since )(LM∈α , )(Lprr ∈ .With the method of 
dual above,it is easily to prove that µ is a countable r -cover of A .Supposeν is 
a finite subfamily of  
µ such thatν is an +r -cover of A .Put νψ ′= ,thenψ is an −α -C-RF 
of A .Thus A is generalized countably L-compact. 

Definition2.5. Let ),( δXL be a GL-ts, XLA∈ , )(Lprr ∈ and XL⊂µ .If 
for every finite subfamily 
ν of µ and for each )(* rt α∈ ， there is an )(Ax t′∈ε such 

that tx ′≥∧ ))(( ν ,then we say thatµ has an 
+r -finite intersection property in A . 

Theorem2.6. Let ),( δXL be a GL-ts and )(Lprr ∈ . XLA∈ is generalized 
countably L-compact if and only if every countable subfamily of GL-closed 
sets µ has an +r -finite intersection property in A ,and there is 

an )(Ax r′∈ε such that rx ′≥∧ ))(( µ . 
Proof. Let A be generalized countably L-compact.Suppose there is a prime 

element )(Lpre∈ and 

Some countable subfamily of GL-closed sets µ has an +e -finite intersection 
property in A ,for each x  

)(Ar′∈ε such that ex ′≥∧ ))(( µ .Then there exists a µ∈B such 
that exB ′≥)( ,i.e. exB ≤′ )( .This 
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shows µ′ is a countable e -cover of A .By the Theorem2.4,there is a finite 

subfamily },,{ 1 nBB =n  

of µ such that ν ′ is an +e -cover of A .Hence for some )(* et α∈ and 

each )(Ax r′∈ε ,there is an ν∈iB  

such that txBi ≤′ )( .And 

so txBi
n
i ≤′∨ = ))(( 1 ,i.e. txBx i

n
i ′≥∧=∧ = ))(())(( 1n ,which contradicts 

thatµ has an +e -finite intersection property in A . 
Conversely,letµ be a countable r -cover of A and )(Lprr ∈ .If none of the 

finite subfamilyν ofµ  

is +r -cover of A ,then every )(* rt α∈ there is an )(Ax r′∈ε such 
that txC ≤)( for each ν∈C .And so 

tx ≤∨ ))(( ν ,equivalently, tx ′≥′∧ ))(( ν .This shows that subfamily of 
GL-closed setsµ′ having an 

+r -finite intersection property in A .Hence there is an )(Ax r′∈ε such 
that rx ′≥′∧ ))(( µ ,i.e. ))(( xµ∨  

r≤ .This implies thatµ is not a countable r -cover of A ,a contradiction.By the 
Theorem2.4, A  is 
generalized countably L-compact. 

Theorem2.7. Let ),( δXL be a GL-ts and XLBA ∈, .If A is generalized 
countably L-compact and 

δ ′∈B ,then BA∧  is generalized countably L-compact.  
Proof. Let δφ ′⊂ be a countable α -C-RF 

of BA∧ ))(( LM∈α .Then }{1 B∪= φφ is a countableα -C-RF of A .In 

fact,for each Bx ∈α then BAx ∧∈α .Hence,there is 1φφ ⊂∈P such 

that )( αη xP∈ .If Bx ∉α ,then φ∈B and )( αη xB∈ .Thus, 1φ is indeed a 

countableα -C-RF of A .Since A is generalized countably L-compact.there 
exists an )(* αβ∈r and finite subfamily 1ψ of 1φ such that 1ψ is an r -C-RF 

of A .Let }{1 B−=ψψ ,thenψ is a finite subfamily ofφ ,andψ is an r -C-RF 

of BA∧ .In fact, BAxr ∧∈ ,then Axr ∈ ,from the definition of 1ψ ,there 

is 1ψ∈P , with )(1 rxP η∈ .But Bxr ∈ ,so BP ≠ ,and 

thus ψψ =−∈ }{1 BP .Hence, BA∧ is generalized countably L-compact. 
Theorem2.8. If A and B are generalized countably L-compact in GL-ts 
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( δ,XL ),then BA∨ is generalized countably L-compact. 
Proof. This is analogous to the proof of the theorem4.1(2) in [3]. 

  Theorem2.9. Let ),( δXL and ),( τYL be two GL-ts’s, YX LLf →→ : a 
GL-continuous mapping and A a generalized countable L-compact set 
in ),( δXL .Then )(Af → is generalized countable L-compact in ),( τYL .   

Proof. Let τφ ′⊂ be a countable α -C-RF 

of )(Af → and ))(( LMAx ∈∈ αα .To begin with,let us show 

that }:)({)( φφ ∈= ←← PPφφ a countable α -C-RF of A .Since →f is 
GL-continuous and 

Ax ∈α , δφ ′⊂← )(φ and )())(()( Afxfxf →→→ ≤= αα .By φ is a 

countable α -C-RF of )(Af → , there is 

a φ∈P with )))((( αη xfP →∈ ,i.e. Pxf ≤→
α))(( ,or,equivalently,

α≥→ ))(( xfP .By the definition of inverse 

mapping, α≥= →← ))(())(( xfPxPf ,hence )(Pfx ←∉α ,i.e.

)()( αη xPf ∈← . 

Therefore )(φ←φ is a countableα -C-RF of A . 

Since A is generalized countably L-compact,there exists an )(* αβ∈r and a 

finite subfamilyψ of φ such that )(ψ←f is an r -C-RF of A .Again,by the 

generalized countable L-compactness of A ,there exists an )(*
1 rr β∈ and a 

finite subset 1ψ of )(ψ←f such that 1ψ is an 1r -C-RF of A .Obviously we can 

take )(1 ψψ ←= f . 

Now we will show thatψ is an r -C-RF of )(Af → .Let )(Afyr
→≤ ;by 

the Lemma 4.10 
[8], })(),(:sup{ randxAyfxLr ≤≥∈∃∈= ← λλλ .Since )(*

1 rr β∈ ,

we have )(1 rr β∈ and hence there is 

a L∈λ and )(yfx ←≤ with λ≥)(xA , r≤λ ,and 1r≥λ ;thus Axr ≤
1

.It 

follows from )(ψ←f s an r -C-RF of A that there is 

a ψ∈P with )()(
1r

xPf η∈← ,i.e. 1))(( rxPf ≥← .Hence =)(yP  

1))(( rxfP ≥→ and therefore 

certainly ryP ≥)( ,i.e. )( ryP η∈ .Thus )(Af → is generalized countably 
GL-compact. 
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Corollary2.10. Let ),( δXL be a countable L-compact space 

and ),(),(: τδ YX LLf → a surjective GL-continuous 

mapping.Then ),( τYL is generalized countably L-compact. 

3.Generalized Lindelöf sets 

Definition3.1. Let ),( δXL be a GL-ts and XLA∈ . A is called generalized 

Lindelöf sets if everyα -C-RFφ of A has a countable subfamily which is an 

−α -C-RFφ of A ( )(LM∈α ). ),( δXL is called generalized Lindelöf space 

if X1 is generalized Lindelöf. 

  From the Definitions 3.1 and 2.6 we immediately obtain the following results. 

  Theorem3.2. Let ),( δXL be a GL-ts and XLA∈ .Then A is generalized 

L-compact set if and only if A is generalized Lindelöf and generalized countably 

L-compact. 

  Analogous to generalized countable L-compactness,we have the following 

results. 

  Theorem3.3. Let ),( δXL be a GL-ts and )(Lprr ∈ .Then A is generalized 

Lindelöf set if and only if every r -cover µ of A has a countable 

subfamilyν which is an +r -cover of A . 

  Theorem3.4. Let ),( δXL be a GL-ts and XLBA ∈, .If A is generalized 

Lindelöf set and δ ′∈B ,then 

BA∧ is generalized Lindelöf. 

  Theorem3.5. If A and B is generalized Lindelöf sets in 

GL-ts ),( δXL ,then BA∨ is generalized Lindelöf. 

  Theorem3.6. Let ),( δXL and ),( τYL be two GL-ts’s, YX LLf →→ : a 

GL-continuous mapping and A a generalized Lindelöf set 

in ),( δXL .Then )(Af → is generalized Lindelöf in ),( τYL . 
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  Corollary3.7. Let ),( δXL and ),( τYL be a generalized Lindelöf set 

and ),(),(: τδ YX LLf → a surjective GL-continuous 

mapping.Then ),( τYL is generalized Lindelöf. 
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