

On the Security of a Public Auditing Protocol
for Shared Data with Efficient User Revocation
in the Cloud

FangChao Ma1 ,Hechao Li2,Hua Guo2,a,ChunHe Xia1
1. Beijing Key Laboratory of Network Technology, Beihang
University, Beijing 100191, China
2. State Key Laboratory of Software Development
Environment,Beihang University, Beijing 100191, China
3. a Corresponding Author: hguo.xyz@163.com

Abstract.

Recently, Wang et. al. proposed a public auditing protocol with efficient user's

revocation for shared data in the cloud storage (InfoCom 2013, 2904-2912). By

taking a careful look at the scheme, we noticed that their scheme has inherent

limitations. In short, In short, the auditor cannot find the correct public key to

verify those re-signatures which are converted from the original signatures. In this

paper, we show a detailed weakness analysis on Wang et al.’s protocol, and

propose a solution to remedy the weakness without sacrificing any desirable

features of the mechanism.

Keywords: Public auditing, Shared data, Cloud storage, User revocation,
Cryptanalysis

Introduction

Recently, sharing data with each other in a group is very popular with the

development of data storage and sharing services provided by the cloud. In this

work model, an original group user creates shared data and hosts them on the

cloud server. After that, every group user is able to access and modify shared data

so that he can share the latest version with the rest of the group. To protect shared

data’s integrity, all of the data, including the data created by the original group

user and the data modified by different group users, should be signed before they

International Symposium on Computers & Informatics (ISCI 2015)

© 2015. The authors - Published by Atlantis Press 1647

are stored on the cloud server. Thus different data blocks are signed by different

users due to data modifications performed by different users. Since each data

block is signed by a group user, a public verifier, such as a third party auditor

(TPA), can check data integrity in the cloud without downloading the entire data,

referred to as public auditing.

When a user is revoked from the group, he is no longer able to access and

modify shared data, and the signatures generated by him are no longer valid to the

group [1]. Therefore, although the content of shared data is not changed during

user revocation, the blocks signed by the revoked user have to be re-signed by an

existing user in the group, so that, after the revocation, the integrity of the entire

data can still be verified with the public keys of existing users only.

Most of the previous works [2, 3, 4, 5] focus on auditing the integrity of

personal data and preserve identity privacy from the TPA. None of them considers

the efficiency of user revocation when auditing the correctness of shared data until

recently, Wang et al. [6] presented a public auditing mechanism with efficient user

revocation in an untrusted cloud by utilizing proxy re-signatures. More precisely,

once a user is revoked, the cloud is able to re-sign the blocks, which were signed

by the revoked user, with a re-signing key. Meanwhile, the cloud, which is not in

the same trusted domain with each user, is only able to convert the signature of the

revoked user into a signature of an existing user on the same block, but it cannot

sign arbitrary blocks on behalf of either the revoked user or an existing user.

In this paper, we revisit Wang et al.’s [6] public auditing protocol and show that

there is an inherent limitation on their protocol. In short, the auditor cannot find

the correct public key to verify those re-signatures which are converted from the

original signatures. we show a detailed weakness analysis on Wang et al.’s

protocol, and propose a solution to remedy the weakness without sacrificing any

desirable features of the mechanism.

Review the Protocol

1648

Let 1G and
2G be two groups of order p, g be a generator

of 1G , 1 1 2:e G G G× → be a bilinear map, w be a random element of 1G . The

global parameters are 1 2(, , , , , , , ')e p G G g w H H , where H is a hash

function with *
1:{0,1}H G→ and 'H is a hash function

with *' :{0,1} qH Z→ . The total number of blocks in shared data is n , and

shared data is described as 1(,...,)nM m m= . The total number of users in the

group is d . Without loss of generality, assume user u1 is the original user, who is

the creator of shared data. Wang et.al's public auditing mechanism consists of six

algorithms: KeyGen, ReKey, Sign, ReSign, ProofGen, ProofVerify.

 KeyGen. User iu generates a random i px Z∈ , and outputs his/her public

key ix
ipk g= and private key i isk x= . The original user also creates a user

list (UL), which contains ids of all the users in the group. The user list is

public and signed by the original user.

 ReKey. Assume that private and authenticated channels exist between each

pair of entities, and there is no collusion.To generate a re-signing key ijk ,

the cloud firstly selects a random pr Z∈ and sends it to user iu . After that,

User iu sends / ir x to user ju , where i isk x= . Then user ju sends

/j irx x to the cloud, where j jsk x= . Finally the cloud recovers

/i j j i Prk x x Z→ = ∈ .

 Sign. Given private key i isk x= , block k pm Z∈ in shared data M and its

block identifier kid , where [1,]k n∈ , user u i outputs the signature on block

km as 1(())k im x
k kH id w Gσ = ∈ .

1649

 ReSign. When user iu is revoked from the group, the cloud is able to

convert signatures of user iu into signatures of user ju on the same block.

More specifically, given re- signing key i jrk → , public key ipk , signature

kσ , block km and block identifier kid , the cloud first checks the equation

(,) ? (() ,)km
k k ie g e H id w pkσ = . If the verification result is 0, the cloud

outputs ⊥ ; otherwise, it

outputs /(()) (())i j i j i jk krk x x x xm m
k k k kH id w H id wσ σ →= = = .

After the re-signing, the original user removes user u i’s id from UL and signs

the new UL.

 ProofGen. To audit the integrity of shared data, the TPA generates an

auditing message as follows:

1) Randomly picks a c-element subset L of set [1, n] to locate the c selected

random blocks that will be checked in this auditing task;

2) Generates a random l qy Z∈ , for l ∈ L and q is a much smaller prime

than p;

3) Outputs an auditing message (,)l l Ll y ∈ , and sends it to the cloud.

After receiving an auditing message, the cloud generates a proof of

possession of shared data M. More concretely,

1) The cloud divides set L into d subset L1,··· ,Ld, where Li is the subset of

selected blocks signed by user ui. And the number of elements in subset

Li is ci. Clearly, we have 1
d
i ic c== ∑ , 1 dL L L=  and

i jL L φ= ,for i j≠ ;

2) For each set Li, the cloud

computes
i

i l l pl L
y m Zα

∈
= ∈∑ , 1

l

i

y
i ll L

Gβ σ
∈

= ∈∏ .For L1, the

1650

cloud computes
11

11 l ll L
y mα

∈
=∑ ,

11
11

ly
ll L

β σ
∈

=∏ , and

12
12 l ll L

y mα
∈

=∑ ,
12

12
ly

ll L
β σ

∈
=∏ ;

3) Finally, the cloud outputs an auditing proof (, , ,)ll Lidα β γ ∈ ,

where 1(, ,)dα α α=  , 1(, ,)dβ β β=  ,

1rgg = , 1 11 12(,)α α α= , 1 11 12(,)β β β= .

 ProofVerify. With an auditing proof (, , ,)ll Lidα β γ ∈ , an auditing

message (,)l l Ll y ∈ ,and all the existing users public keys (pk1,··· ,pkd) , the

TPA checks the correctness of this auditing proof as

1 1

(,) (() ,)l i

i

d d
y

i l i
i i l L

e g e H id pkαβ ω
= = ∈

=∏ ∏ ∏ holds or not. If the

result is 1, the verifier believes that the integrity of all the blocks in shared

data M is correct. Otherwise, the verifier outputs0.

On the Security of the Protocol

This is section, we will show the weaknesses of Wang et. al’s protocol.

 Recall that to support dynamic data during public auditing, Wang et al.

leverages index hash tables in their public auditing scheme. More precisely, they

defined a block identifier as idi= {vi||ri||si},where vi∈ N∗ is the virtual index of

this block, ri is computed as |id| = H`(mi||vi) with a collision-resistance hash

function *' :{0,1} qH Z→ , and si is the signer id of block mi. Note that si is

used to distinguish the identity of the signer so that the cloud can easily distinguish

which block needs to be re-signed during user revocation.

We firstly revisit the execution process of the auditing protocol. After receiving

an auditing message, the cloud checks if a user B is revoked or not. If so,the cloud

runs the ”Resign” algorithm to convert B’s signatures into existing group

number’s signatures, say A. After that, the cloud generates a proof of possession

1651

of shared data M, and sends it to the auditor. Note that {idl} l∈L are in the auditing

proof (α, β, {idl} l ∈ L). After receiving this auditing proof, the auditor first

distributes each{idl} l∈L to the correct user ui using sl in idl, and then verifies

whether the equation holds or not.

 Based on the above construction, we will show why the auditor cannot find

the correct public key to verify those re-signatures which are converted from the

original signatures. More precisely, suppose the cloud tries to convert ui’s

signatures into uj’s signatures. In Wang et al.’s scheme the cloud decides which

existing group user the signatures should be converted into, thus when the re-sign

process is finished, the private key of the converted signatures are changed from xi

to xj, too. Here comes the problem:

 If the cloud changes the value of sk, the auditor can find the correct public

key pkj to verity the converted signatures signed by xj. However, in this case

{idl} l∈Li are changed too, and the auditor cannot verify the auditing proof

correctly in the ProofVerify stage and the cloud cannot check the message’s

integrity in the re-sign stage when this data block is resigned again.

 If the cloud does not change the value of sk, the auditor would not know that

the signatures signed by ui are converted to the signatures signed by uj. Since

{idl} l∈Li are distributed to user ui using si in the tuple of idi, thus he still use

ui’s public key, instead of uj’s public key, to verify the signatures signed by

uj’s private key, which would obviously cause to failure.

 In Wang et al’s paper, they assume that the cloud always converts signatures of

a revoked user into the pre-defined original user u1 who the auditor always knows.

However this would cause other problems. For example, the original user is not

allowed to revoke from the group, otherwise the problems mentioned above

would happen again. For another example, the original user would become a

bottleneck and should be on-line if group numbers revoke frequently, since

private and authenticated channels among the revoked users, the original user and

the cloud are needed when rekeys are computed. Thus always converting

1652

signatures of revoked users into signatures of the original user is not a satisfying

solution.

 Moreover, in Wang et. al.’s experiments (See Section VI.C), they assume the

size of an element of Zq is |q| = 80 bits, the size of a block identifier is |id| = 80 bits,

while we find this is problematic, since the size of |id| must be bigger than the size

of ri and could not be equal where idi= {vi||ri||si}. Thus, we suggest that the size

of an element of Zq is |q|=64 bits, the size of a block identifier is |id|=96 bits, the

size of vi is 24 bits, and the size of si is 8 bits.

Fix on Wang et.al’s Public Auditing Mechanism

In this section, we try to fix Wang et al’s Public Auditing protocol.

Firstly we check the reason of the weakness. Note that the form of a signature of

user i is (())k Am x
kH id w where ()kH id and mk are all signed by the private key xi.

Different from other public auditing protocols with dynamic data, to help the

cloud to easily distinguish which block needs to be re-signed during user

revocation, the signer id of block mk, i.e., si, is added to idk. When a signature of

user ui is converted into a signature of user uj using the Resign algorithm, only the

private key of ui is changed to the private key of uj, while idk is unchanged. In

other words, signer ui’s id (sk) of the message mk is unchanged, although now the

message is actually signed by user uj. The inconsistency of the private key and the

signer’s id contributes the weakness of Wang et al.’s protocol.

Now we give the measurement to fix this weakness. To make the auditor

verifies the audit proof correctly, αi, β i, {idl}l∈Li and pki are used to compute the

two sides of the equation. Since {idl} l∈Li are not changed, thus the auditor cannot

find the correct public key of the resigner. Our measurement is as follows: When

the cloud produces a auditing proof, it also generates a translation list where each

record is ui → uj which means the signatures of ui is translated to the signature of

uj. After that, the cloud signs this list with its private key, and sends them along

with the auditing proof to the auditor. After receiving the auditing proof, the

1653

auditor firstly checks the integrity of the translation list using the cloud’s public

key. Then it distributes {idl}l∈Li to user ui by si. After that, it checks if ui → uj is

in the list or not. If so, it uses pkj and {idl}l∈Li } to verify the auditing proof iα , iβ ;

otherwise, it uses pki and {idl}l∈Li } to verify the auditing proof iα , iβ .

Since the size of the translation list and its signature is very small, the

computation cost for computing the signature by the cloud and verifying the

signature by the auditor is also very small. Moreover the communication cost

introduced by this list is small, too.

Summary

In this paper, we analyzed a public auditing protocol with efficient user revocation

for shared data in the cloud storage proposed in [6], and demonstrated that the

auditor cannot find the correct public key to verify those re-signatures which are

converted from the original signatures. We also fixed the weakness so that the

revoked users’ signatures can be verified correctly by the auditor, without losing

any features of the original protocol.

Acknowledgements
This work was supported by the National Natural Science Foundation of China

(61300172), the Research Fund for the Doctoral Program of Higher Education

(20121102120017), the Fund of the State Key Laboratory of Software

Development Environment (SKLSDE-2014ZX-14), and the Fundamental

Research Funds for the Central Universities（YWF-14-JSJXY-008).

References
[1] B.Wang, B.Li, H.Li, “Knox: Privacy-Preserving Auditing for Shared Data

with Large Groups in the Cloud,” in the Proceedings of ACNS 2012, June

2012, pp.507–525.

1654

[2] G.Ateniese, R.Burns, R.Curtmola, et. al. “Provable Data Possession at

Untrusted Stores,” in the Proceedings of ACM CCS 2007, 2007, pp.598–610.

[3] H.Shacham, B.Waters, “Compact Proofs of Retrievability,” in the Proceedings

of ASIACRYPT 2008. Springer-Verlag, 2008, pp.90–107.

[4] C.Wang, Q.Wang, K.Ren, W.Lou, “Privacy-Preserving Public Auditing for

Data Storage Security in Cloud Computing,” in the Proceedings of IEEE

INFOCOM 2010, 2010, pp.525–533.

[5] Y.Zhu, H.Wang, Z.Hu, et. al.“Dynamic Audit Services for Integrity
Verification of Outsourced Storage in Clouds,” in the Proceedings of ACM
SAC 2011, 2011, pp.1550–1557.

[6] B. Wang, B. Li, H. Li," Public auditing for shared data with efficient user
revocation in the cloud", INFOCOM 2013, 2904-2912.

1655

	FangChao MaP1P ,Hechao LiP2P,Hua GuoP2,aP,ChunHe XiaP1
	1. Beijing Key Laboratory of Network Technology, Beihang University, Beijing 100191, China
	2. State Key Laboratory of Software Development Environment,Beihang University, Beijing 100191, China
	3. Pa PCorresponding Author: hguo.xyz@163.com
	Keywords: Public auditing, Shared data, Cloud storage, User revocation, Cryptanalysis

