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Abstract 

Most active noise control (ANC) algorithms require the identification of the 
secondary path, thus suffer from large complexity, increased residual noise power 
and algorithm divergence. In this paper, we propose a novel ANC algorithm 
without secondary path identification based on Kalman filter, referred to as Model 
Error Compensatory Kalman Filter (MECKF). The ANC problem is described in 
discrete-time state-space form first, then the dynamics of the primary path can be 
attributed to the state variables. Kalman filter is applied to estimate the weights 
using residual noise sequence. Furthermore, based on acoustics properties and 
stochastic theory, we introduce a model error compensating mechanism by 
shifting the influence of the unknown secondary path into variance of 
measurement matrix. In addition, a new method of estimating the statistical 
properties of the noise in dynamic model is given in the context of ANC system, 
with merits of reduced computational complexity, increased convergence rate, 
and ensured real-time. 
Keywords: active noise control (ANC),Kalman  filter, secondary path, 
state-space. 

1. Introduction 
Active noise control (ANC) works on the principle of destructive interference 
between the sound fields generated by original “primary” sound source and that 
by other “secondary” sources, which has become an important area in noise 
control research, due to its effectiveness in low-frequency noise cancellation. 
Adaptive ANC has been well-established with the development of adaptive signal 
processing, it is essential that adaptive ANC algorithm--filtered-x algorithm 
requires identification of the secondary path. Most linear ANC system use the 
Least Mean Square (LMS) [1] algorithm due to its simplicity. To overcome the 
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slow convergence and high sensitivity to the eigenvalue spread [2-3] problems 
associated with LMS, Recursive Least Square (RLS) [2] algorithm is often used. 
Their poor performance in unstable environment lead to the combination between 
Kalman filter [4-7] and ANC, which is a general framework of RLS algorithm, the 
demand of small number of taps can reduce its high computational complexity [3], 
also the Kalman filter may be easily applied in ANC by today’s DSPs. Paulo 
Lopes [4] fitted a specialized version of the Kalman filter to both control filter 
adaptation and secondary path modeling. The fast-array Kalman filter proposed 
by Fraanje Rufus [5] has a fast convergence rate. Bambang Riyanto [6] developed 
a learning algorithm for diagonal recurrent neural networks based on Kalman 
filter referred to as Diagonal Recurrent Extended Kalman Filter. 

Since the requirement of identifying the secondary path caused several 
problems: increase the complexity and residual noise power of the control system, 
error in identifying the secondary path may cause algorithm to diverge, a control 
algorithm that does not require secondary path identification has become popular 
currently [8-12]. Of all these method, the most attracting one is the Direction 
Search Least Mean Square (DSLMS) proposed by Zhou [8], which is based on 
geometric analyses and the strict positive real (SPR) property of the filtered-x 
LMS, simple to implement and yields good performance, however, converges 
slowly and will diverge at a particular frequency band in which the secondary path 
phase response near or equal to ±90°. 

Because require prior knowledge of the model and the statistical properties of 
model noises, Kalman filter now is constrained within filtered-x ANC algorithm. 
Here, for the first time, we introduce a Kalman filter based ANC algorithm 
without secondary path identification, Model Error Compensatory Kalman Filter 
(MECKF) algorithm. In state interpretation of feedforward ANC system, our 
proposed method formulates controller weight estimation problem without 
secondary path identification as Kalman filter parameter estimation, adjusting 
Kalman gain to compensate the unknown secondary path effect, meanwhile a new 
method to determine model noise is given. The new algorithm enjoys fast 
convergence, low residual noise power, good performance in both stationary and 
non-stationary environment. 

2. Algorithm principle and implication 

It is critical in ANC algorithm without secondary path identification to estimate 
controller weight and compensate the unknown secondary path influence. 

2.1 State-space form of ANC system 

The general block diagram of feedforward ANC problem is shown in 
Fig.1. ( )P z , ( )S z  and ( )W z  represent the primary path, secondary path and 
ANC controller, respectively; ( )r n is the original disturbance signal and also the 
input of the adaptive algorithm, which becomes primary signal ( )d n  propagating 
through primary path; ( )v n  and ( )e n  are additive noise and residual noise, 
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respectively; ( )u n  is the control signal output by ANC controller; ( )ŷ n  is the 
secondary signal. The most common form of ( )W z  is the transverse FIR adaptive 
filter. 

( ) 1 1
0 1 1

M
MW z w w z w z− − +
−= + + +                               (1) 

Where, M  is the tap number of the controller, ( )0,1, , 1iw i M= − is the weight 

of the controller. Weight vector is [ ]T0 1 1Mw w w −=w    

 
Fig.1  General block diagram for an active noise  control (ANC)  problem 

The objective of ANC problem is to seek the optimal weight vector  Ow , with 
which the optimal controller ( )OW z  can generate a control signal ( )u n , such 
that the secondary signal ( )ŷ n  cancels the sum of primary signal ( )d n  and 
additive noise ( )v n . Namely, a series connection of the optimal controller and 
secondary path is the best approximation of the primary path, ( ) ( ) ( )= OP z W z S z . 
Then the dynamics of the primary path accounts for weight estimation errors. The 
weight vector is updated by (2). 

( ) ( ) ( )11n n nλ= − +w w v                                       (2) 
Where ( )1 nv  is the estimation noise, ( )0 1λ λ<< ≤  is the factor of weight 
adapting. 

Let the reference signal vector ( ) ( ) ( ) ( )1 1n r n r n r n M= − − +  r   
Then the secondary signal is 

( ) ( ) ( ) ( )ŷ n n n S n= ∗  r w                                     (3) 

Where, ( )S n  represents the secondary path in discrete-time domain. Define 
( ) ( ) ( )y n d n v n= + , we can write 

( ) ( ) ( ) ( ) ( )y n n n S n e n= ∗ +  r w                             (4) 
Where, ∗  represents convolution. 

According to the state-space model of discrete linear dynamic system in control 
theory, (2) is the state equation of ANC system, (4) is the measurement equation. 
Thus, we can update weights by using state estimation solution. 

2.2 Kalman filter weight estimation 

Since the Kalman filter provides a minimum variance estimate of the state based 
on minimum mean square error, with fast convergence and high performance in 
both stationary and non-stationary environment, we use this filter to estimate 
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( )nw . 
We modeled secondary path as FIR filter with coefficients as 

( ) 0 1 1, , ,
S

T

Mn S S S − =  S                                          (5) 

Assuming ( )1 nv  to be a zero-mean white noise, weight updating becomes 
( ) ( )in n iλ= −w w                                               (6) 

Then (4) becomes 
( ) ( ) ( ) ( )Sy n n n e nλ= +r w                                        (7) 

Where 

( ) ( )
1

0

SM
i

S i
i

n n i Sλ λ
−

−

=

 
= − 
 
∑r r                                       (8) 

Based on the definitions in state-space, (2) and (7) are rewritten as 
( ) ( ) ( )11 1n n n= − + −w Fw v                                      (9) 

( ) ( ) ( ) ( )2Sy n n n v nλ= +r w                                       (10) 
Where, ( )nw  is L×1 weight vector; ( )y n is measurement vector; λ=F I  ( I is L 
order unit matrix) is state transition matrix (STM); ( )S nλr  is 1×L measurement 
sensitivity matrix; vector ( )1 nv  is L×L system noise, ( )2v n  is 1×1 measurement 
noise, with statistical properties as follows 

( ) ( )1 1E n n=  v v ，    ( ) ( ) ( )1 1 1c )ov , (n m n mn δ=  − v v Q  

( ) ( )2 2E v n v n=   ，    ( ) ( ) ( )2 2 2cov , ( )v n v m mQ n nδ=  −   

( ) ( )1 2cov ,n n =  v v 0  

Where, ( )1 nQ is L×L system noise variance matrix, ( )2Q n  is measurement noise 
variance matrix, ( )n mδ −  represents Kronecker function. 

Applying Kalman filter to search Ow  can be describe as: seek the optimal 
estimation (the linear minimum variance estimation) of ( )nw  based on 
measurement data ( )y n , makes estimation ( )ˆ | 1y n n −  approximate to ( )y n , 
which means ( ) ( ) ( )ˆ | 1 mine n y n y n n= − − = . The cost function of the linear 
minimum variance estimation is given by 

( ) ( )( ) ( ) ( )( )ˆ ˆE | 1 | 1
T

n n n n n n = − − − −
 J w w w w                    (11) 

Filter state-error and its covariance are defined as 
( ) ( ) ( )ˆ| |n n n n n= −w w w                                         (12) 

( ) ( ) ( )| E | |Tn n n n n n =  K w w                                    (13) 
Prediction state-error and its covariance as 

( ) ( ) ( )ˆ| 1 | 1n n n n n− = − −w w w                                   (14) 

( ) ( ) ( )| 1 E | 1 | 1Tn n n n n n − = − − K w w                             (15) 
Innovation process 

( ) ( ) ( )ˆ | 1e n y n y n n= − −                                          (16) 
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is the residual noise of ANC system. According to the projection theory, 
( )ˆ | 1n n −w  is the projection of ( )nw  on a finite dimensional Hilbert space 

composed of ( ) ( ) ( ){ }1 , 2 , ,y y y n , thus can be given in form of a linear 

combination of ( )e n  

( ) ( ) ( )
1

ˆ | 1
n

n
k

n n k e k
=

− = ∑w B                                       (17) 

Where, ( ){ } 1

n
i k

k
=

B  is 1L×  coefficients matrix. Based on the orthogonality of 

( )e n , we have 

( ) ( ) ( ) ( )ˆ ˆ| | 1n n n n n e n= − +w w G                               (18) 
Where, ( )nG  represents the Kalman gain. 

Utilizing (9) and (10) we can write residual noise as 
( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )1 1 2 21 | 1 1 1Se n n n n n n v n v nλ  = − − + − − − + − r Fw v v      (18) 

Prediction state-error covariance as 
( ) ( ) ( )1| 1 1 | 1 1Tn n n n n− = − − + −K FK F Q                             (19) 

Then the cost function of ANC system becomes 
( ) ( ) ( ) ( ) ( )2

2E | 1 T
ANC S Se n n n n n Q nλ λ = = − + J r K r                   (21) 

from which we know that minimizing J  and ANCJ  are equal. 
Now using (14), (18) and (20), we get the relation between ( )|n nK  and 
( )nG  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2

| | 1 | 1 | 1

| 1

T T
S S

T T T
S S

n n n n n n n n n n n n

n n n n n n n n n
λ λ

λ λ

= − − − − −

+ − +

K K K r G G r K

G r K r G G Q G   (22) 

According to the minimum principle of matrix 

( ) ( ){ }tr E |n n
n

∂
=  ∂

K 0
G                                       (23) 

The solution of ( )nG  should be 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 1

2| 1 | 1T T
S S Sn n n n n n n n Q nλ λ λ

−
 = − − + G K r r K r         (20) 

The Kalman filter in prediction form is 
( ) ( ) ( ) ( )ˆ ˆ| | 1n n n n n e n= − +w w G                                                           (21) 
( ) ( ) ( )1ˆ ˆ| 1 1 | 1 1n n n n n− = − − + −w Fw v                                                  (22) 
( ) ( ) ( ) ( ) ( ) ( ) ( ) 1

2| 1 | 1T T
S S Sn n n n n n n n Q nλ λ λ

−
 = − − + G K r r K r          (23) 

( ) ( ) ( )1| 1 1 | 1 1Tn n n n n− = − − + −K FK F Q                                           (24) 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )2

| | 1

1

T
S Sn n n n n n n n

n n n
λ λ= − − −      

+ −

K I G r K I G r

G Q G                   (25) 
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To initialize the algorithm, set ( ) 0ˆ 0 | 0 =w w  and ( ) 00 | 0 =K K . The two input 
signals of the Kalman Filter are ( )S nλr  and ( )e n . Noted that, the form in (29) is 
essential in broadband noise cancellation which maintains the nonnegative 
definiteness of ( )|n nK  in order to avoid divergence. 

2.3 Implement of ANC algorithm without secondary path identification  

The measurement sensitivity matrix is filtered reference signal includes secondary 
path model in both measurement equation (10) and Kalman filter (25) ~ (29). 
Considering ANC algorithm without secondary path identification, the 
measurement sensitivity matrix should be the reference signal ( )nr  because the 
secondary path model remains unknown, however, this violates the central 
premise in Kalman filter theory that the underlying state-space model is accurate, 
which deteriorates its performance and restrains its application. To solve this 
contradiction, we need to compensate the influence caused by the uncertain 
secondary path. It is assumed in acoustic field, that acoustic propagation in space 
can be simplified as amplitude decay and acoustic time delay, in case of far-field 
or mainly direct sound in enclosure [3]. Based on this assumption, it is reasonable 
to regard the dynamics of the secondary path ( )S z  small enough to treat ( )S nλr  

as reference signal with a small random fluctuation ( ) ( )n n+r r , thus, the 

uncertainty of ( )S z  is migrated to the fluctuation of ( )nr . The fluctuation of 

measurement sensitivity matrix is ( ) ( ) ( ) ( ), 1 , , 1n r n r n r n L= − − +  r    , with 

( )E 0n =  r  and ( )D nn σ=  r , nσ is L order nonnegative definite matrix. 
We recast the measurement equation with random fluctuation as a linear 

dynamic system with determined measurement matrix 
( ) ( ) ( ) ( )2n n n v n= +y r w                                        (26) 

( ) ( ) ( ) ( )2 2v n v n n n= + r w
                                      (27) 

Where ( ) ( )E S n nλ =  r r . The system satisfies assumptions below: 

Assumption 1: ( ) ( ) ( ) ( ){ }1 2, , , , 0,1, 2,Sn n n v n nλ =F r v   is a mutual  
independent stochastic variable sequence. 

Assumption 2: ( )nw  and ( ){ }, , 0,1, 2,S n nλ =F r   are mutual independence. 

0w  and ( ) ( ){ }1 2, , 0,1, 2,n v n n =v   are mutual independence. 

Assumption 3: The statistical properties of initial state 0w , noises ( )1 nv  and 
( )2v n , STM F , measurement matrix ( )S nλr  are: 

[ ]0 0E =w μ ，           ( )( )0 0 0 0 0E T − − = w μ w μ K  

( )1E n =  v 0 ，       ( ) ( ) ( )1 1 1E , nmn m n δ=  v v Q ， 
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( )2E v n =   0，        ( ) ( ) ( )2 2 2E , nmv n v m n δ=   Q  

( ) ( )E S n nλ =  r r ， ( ) ( ) ( )cov , 1rr n r n C n= =      
Now we proof that (30) and (31) are in accordance with standard Kalman filter 

request: 
i) It is easy to know 

( ) ( ) ( ) ( )2 2E Ev n v n n n= + =      r w 0                               (28) 

ii)  Noted that 0w  and ( ) ( ){ }2, , 0,1, 2,S n v n nλ =r   are mutually independent, 
we have 

( )0 2E Tv n  = w 0                                                 (29) 

iii)  As for n l∀ ≠ , because of the linear relations between ( )iw  and 1
0

n l− +F w , 
( )1 lv , ( )2

1
i l i− −F v , where 2,3, ,i l= 3  

( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 2
2 2

2

E E 0
T T T

T
T T T

v n v m v n m m
v n v m

n n v m n n m m

 +
  = =   + +  

w r

r w r w w r


 

  
   (30) 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1E ET T T Tn v m n v m n m m   = + =   v v v w r 0
          (31) 

Define ( ) ( ) ( )2 2 2E Tv n v n Q n  = 
  , based on the property of conditional 

expectation, we have  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 2
2

2

2

+
E

E E

T T T

T T T

T T

v n v n v n n n
Q n

n n v n n n n n

Q n n n n n

 
 =
 + + 

  = +   

w r

r w r w w r

r w w r




  

 

                 (32) 

Where 

( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( )

1 1

0 0

2

1

E E

E

L L
T T

i i
i i

L

r i
i

T

n n n n r n i w r n i w

C n w

n n

− −

= =

=

     = − −       

=

 =  

∑ ∑

∑

r w w r

w w



   

          (33) 

Applying ( ) ( ) [ ]( )E E trace trace trace E ET T T
ww

    = = +    w w ww P w w , we 

get 
( ) ( ) ( ) ( ) ( )E tr | 1 | 1 | 1T Tn n n n n n n n   = − + − −   w w K w w              (34) 

Thus, we can utilize (25) ~ (29) in ANC algorithm without secondary path 
identification, replacing measurement matrix with ( )nr , attributing the 

fluctuation of the secondary path to measurement matrix, we can modify ( )2 nQ  

by ( ) ( ) ( ) ( )E E T Tn n n n    r w w r  , to compensate the effect caused by 
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secondary path, finally manage to inhibit the convergence of Klaman filter. So 
comes the name Model Error Compensatory Kalman Filter (MECKF). 

2.4 Determination of the model noise 

The conventional Kalman filter assumes that the statistical properties of the noise 
in dynamic model and observation system are exactly known, but the noise in 
integrated system is uncertain. One classical way to estimate noises ( )1 nv , 

( )2 nv  and their statistical properties ( )1 nQ , ( )2 nQ , is the Saga-Husa (S-H) 
maximum a posterior (MAP) estimator with high complexity and large 
computation. Here, analyzing the ANC system model, we introduce a simple and 
effect method to estimate ( )1 nv , ( )1 nQ , ( )2 nv  and ( )2 nQ . 

First, consider ( )2 nQ , according to (4), knowing ( ) ( )2 n e n=v  easily, 
( )2 nQ  is written as 

( ) ( ) ( )2 E Tn e n e n =  Q                                            (35) 
Now, the measurement updating of Kalman filter is similar to that of the S-H 
method, by using MAP we can prove the unbiasedness of (39).  

As for ( )1 nQ , we refer to S-H MAP, system noise is unbiased estimated by  

( ) ( ) ( ) ( )1
1

1ˆ | 1 1 | 2
n

i
n i i n i i

n =

= − − − −  ∑v w F w                         (36) 

Noted that state approaches its optimal value iteratively from initial value, state 
estimation errors decrease step by step till Kalman filter converges and fluctuate 
around a steady-state value ( )1 nv . So, the estimation (40) by using state 
estimation errors from 1=n  contains the biggest estimation error at the 
beginning, inevitably increasing ( )1 nv  estimation error. Thus, a more 
appropriate way to estimate ( )1 nv  is by using the latest state estimation as 

( ) ( ) ( ) ( )1ˆ | 1 1 | 2n n n n n n= − − − −v w F w                          (37) 
and ( ) ( )1 1ˆ n n=v v  when state estimation convergences to optimal value Ow . 
The statistical property of ( )1ˆ nv  is given by 

( ) ( ) ( )1 1 1
ˆ ˆ ˆE Tn n n =  Q v v                                        (38) 

yet apparently violates the underlying assumption of Kalman filter that ( )1 nv  is a 
white noise process and ( )1 nQ  is a diagonal matrix. To satisfy this premise, we 
make ( )1 nv  orthogonal artificially, defining ( )1

ˆ nQ  as the inner product of the 
system noise vector 

( ) ( ) ( )( )1 1 1
ˆ ˆ ˆn diag n n= ⋅Q v v                                     (39) 

Thus, the diagonal and non-negative definite characteristics of ( )1
ˆ nQ  can be 

guaranteed, which reduces the amount of computation at the same time. 
The advantages over S-H method given by proposed estimation (39) and (43) 

lay on: first, a lower computational complexity; second, avoiding subtraction in 
( )1

ˆ nQ  and ( )2
ˆ nQ  equations guarantee non-negative definite of ( )1 nQ  and 
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positive definite of ( )2 nQ  with carefree divergence; third, with no influences on 
the properties of ( )2 nv  and ( )2 nQ . 

3. Algorithm analysis 

In this section, we investigate computational complexity, convergence rate and the 
noise control effect of the proposed Model Error Compensatory Kalman Filter 
(MECKF) algorithm, compared with Direction Search Least Mean 
Square(DSLMS) algorithm [8] which has a high performance. 

3.1 Effect of measurement fluctuation  

The error of measurement matrix is 
( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1 1

0 0
, , 1

, 1 , , 1

S S

S

M M
i i

i i
i i

n n n

S r n i S r n L i

r n r n r n L

λ

λ λ
− −

− −

= =

= −

 
= ⋅ − ⋅ − + − 
 

− − − +  

∑ ∑

r r r





                  (40) 

with its factor 

( ) ( ) ( ) ( )
1

0
1

1
SM

i
i

i
r n S r n S r n iλ

−
−

=

= − + ⋅ −∑                               (41) 

Based on assumptions of ANC, we model secondary path as 
( ) ( )S SS n A n kδ= − , =0,1, , 1S Sk M −                                 (42) 

Where ( )δ ⋅  represents Kronecker function. Thus (45) becomes 
( ) ( ) ( )S

S

k
k Sr n r n S r n kλ−= − + ⋅ − . There are two useful notification we should 

make: First, ( )r n  would be large due to a large value of delay Sk , that is to say a 
long distance between secondary sensor and cancellation point, also cause the 
algorithm to diverge. As to the situation ( )r n  is a periodic signal, the residual 
noise would be minimized with Sk  being an integral multiple of the period. 
Second, λ  yields a exponential forgetting effect on ( )r n . Thus the algorithm 
will perform better with secondary path approximate to ( ) ( )S SS n A n kδ= − , 
require a small side lobe of the ( )S n  impulse response, and narrow pass band. 

3.2 Computational complexity  

Define an iteration does not include the parameter initialization stage, our 
comparison uses the number of real multiplications and additions per iteration for 
MECKF and DSLMS algorithms in Tab.1. Note that one iteration of DSLMS 
defined as from direction searching stage to performance monitoring stage, and N 
is the number of sample. 

From Tab.1, given the same ANC controller length M, although, the 
computation complexity of MECKF is larger than that of DSLMS, this can be 
compromised by a faster convergence rate of MECKF compared with DSLMS, 
thus ensures real-time, also today DSPs can easily satisfy the computation demand. 
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Besides, M  can be very small for MECKF with a good performance 0, while in 
DSLMS, M  is inversely proportional to the upper bound of step size, and with 
µ  decreasing by an order of magnitude, convergence rate decreased more than 
one order of magnitude, yet increasing µ  for accelerating will increase the mean 
square residual noise, so M needs to balance convergence rate and noise 
reduction. 

Tab.1  Computation complexity of MECKF and DSLMS 
Algorithm   Multiplications  for one iteration   Additions for one iteration   
MECKF 3 23 5 4 5M M M+ + +  3 23 3 1M M M+ − +  
DSLMS 3 6 14M N+ +  3 6 1M N+ −  

3.3 Convergence rate 

Let the original disturbance be a single-tone signal r  with frequency ω , complex 
Pω , jS S e ωθ

ω ω=  and ( )W nω  represent ( )P z , ( )S z  and ( )W z  respectively, 
Sω  is the amplitude of ( )S z  and ωθ  is the phase of ( )S z . Given the one order 

weight updating equation as 

( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 1 1

1 1

j P
W n W n G n r n S e W n

S

G n v n

ωθ ω
ω ω ω ω

ω

λ λ

λ

 
= − + − − − − 

 
+ − −

            (43) 

At the frequency where 90ωθ = ° , (47) becomes ( ) ( )1W n FW nω ω= − , 
0 1F<< <  will adjust weight in some sense, avoid algorithm divergence. While 
DSLMS will diverge in area of 90ωθ = °  and its neighbourhood 0. 

The second term in (47) contains an instantaneous weight estimation factor 
( ) ( )1 1G n r nλ − − , taking into account of state estimation error, measurement 

noise and reference signal power, to guide the direction of weight updating, this 
will accelerate convergence rate in a large scale, and MECKF is a variable step 
size adaptive algorithm. In DSLMS, the instantaneous weight estimation factor µ  
maintains constant after initialization, only its sign can be controlled during 
iterations. 

3.4 Noise control effect 

After convergence, the residual noise powers of MECKF and DSLMS are 
( ) ( ) ( ) ( ) ( ) ( )1 1 1MECKFe n r n P G n r n S v nω ω ωλ λ= − + − −                   (44) 

( ) ( ) ( )21DSLMSe n r n S v nω ωµ = −                                                         (45) 

Though the first term in (48) contains the effect of Pω , the factor λ  that 
approximates to 1 will compromise the influence. In the second term, Kalman gain 
will update such that ( ) minMECKFe nω = , which attenuates secondary path 
influences. DSLMS with a step size µ  near to 0, ( )DSLMSe nω  is mainly and 
greatly influenced by secondary path. Results in PartⅡ demonstrate this point 
clearly. 
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4. Conclusions 

This paper deals with the design and implement of an MECKF algorithm in ANC 
without secondary path identification. 

1) The MECKF algorithm’s step size can be adapted with reference signal, 
state estimation error and residual noise, hence have increased convergence rate to 
ensure real-time. 

2) The MECKF algorithm decreased the influence of the secondary path, 
reduced the RNP. 

3) The MECKF algorithm avoided divergence in phase 90° of secondary path 
because of the transfer matrix but improved control performance. 
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