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Abstract

To illustrate the effectiveness of the proposed MECKF (model error
compensatory Kalman filter) algorithm, its higher performance is demonstrated
by comparing with DSLMS algorithm, and the feasibility of the model noise
determination by comparison with MECKF-S-H method. In the simulation
experiments compared with DSLMS algorithm, we employed stationary condition
for single-tone and broadband ANC, non-stationary conditions with primary path,
secondary path varying and additive noise increasing, the results show that the
MECKEF algorithm converge fast, has a wide noise reduction band, and performs
well in either stationary or non-stationary condition with single-tone and
broadband original noise.

Keywords: active noise control (ANC)Kalman filter, secondary path,
state-space.

1. Introduction

To illustrate the effectiveness of the MECKF[1] algorithm[2,3], We refer
simulation experimental conditions to [4] . The sampling rate of ANC system is
300 Hz. The single-tone original disturbance signal is a 30 Hz sin signal with unit
amplitude. For 0~400 Hz broadband original signal, we set a 4 KHz sampling rate.
v(n) is a zero-mean white-noise signal with 0.01 variance, -20 dB power. The
length of ANC controller is L =11. The step size is ¢ =0.01 for DSLMS[4],
factor 1=0.995 for MECKF and MECKF-S-H(Saga-Husa)[5] method.
Simulation results show learn curves of residual noise e(n) and residual noise

power (RNP (dB) =10log,, E [ez (n)] ), data after convergence, all averaged after

200 Monte Carlo experiments. Note that the secondary path knowledge is unknow
in iterations of different algorithms.
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Due to the diversity of the convergence rate, we set different time and iteration
coordinate ranges with the same amplitude range for different algorithms, in order
to clearly demonstrate convergence process and noise control effect. For
non-stationary conditions in primary and secondary path, we set the changing
pointsat2 s, 1 s, 17 s for MECKF, MECKF-S-H and DSLMS respectively. For
the additive noise increasing experiment, the changing points of DSLMS and
MECKF remain the same, while MECKF-S-H method changes to 2 s.

2. Single-tone ANC with stationary secondary path

In this simulation, the secondary path is modeled by an IIR filter with transfer
function

S(z)=(z"+0.9627+0.49232°)/(1+1.062* +0.33522 )

Fig.1 shows its amplitude, phase and impulse responses. Fig.2 and Tab.1 show
simulation results for different algorithms.

Fig.2 a), b) and Tab.1 show that both MECKF and MECKF-S-H algorithm
converge to the same performance level. However, MECKF-S-H converges fast
at the first 50 samples, but its convergence rate slows down more than MECKF
between 50 to 100 samples. Compared with Fig.2 ¢), MECKF converges much
faster than DSLMS, its RNP is also 4dB smaller with variance of RNP 0.4 smaller.
We found that MECKF performed well between normalized frequency

0 < Q< 0.4(xzrad/sample) while DSLMS between
0<Q< O.2(><7z rad/sample), for a single tone original noise with frequency f,,

sampling rate F, and normalized frequency Q =2f,/F, . We also observe that

MECKF converges when phase response of secondary path near £90°, where
DSLMS diverges[4].

Tab.1 RNP of three algorithms with 30 Hz single tone original disturbance

Algorithm RNP (dB) Variance of RNP
MECKF -24.8 0.6
MECKF-S-H -25.4 0.5
DSLMS -19.4 1.0

By multiplying computation amount per iteration by iteration number for
convergence, we can estimate the convergence time. As can be seen from Fig.2,
MECKEF converges at 50 iteration, DSLMS at 3900 iteration. We denote T, as

computational time for one multiplication, T, as one addition. Then the
convergence time of MECKF is about 2.3235x10°T,, +2.137x10°T,,, , DSLMS

mul a
about 4.8633x10°T_, +4.8048x10°T,,, . MECKF has an order of magnitude less
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time than DSLMS, so in this simulation, MECKF performs faster than DSLMS,

and can be real-time.
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3.

Single-tone ANC with sudden change in primary path

Fig.3 and Tab.2 provide results after primary path P(n) changes to [0, 0, 0, 2,
-1.7083, 3.1861, -2.0451, 0, 1.73071]. Fig. 3 a) illustrates the robustness and
tracking competent of MECKF when P(n) is unstable, RNP fluctuates little, but
the convergence time doubles. The MECKF-S-H converges much more slowly,
RNP varies more greatly. DSLMS algorithm shows no apparent change. Thus we
conclude that MECKF has a better tracking performance than the other two
algorithms.
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Tab.2 RNP of three algorithms after sudden change of primary path

RNP (dB) Variance of RNP
Algorithms Before AF\)f(tr?)r BS]E?];E After
P(n) changes changes changes P(n) changes
MECKF -24.8 -24.4 0.6 0.5
MEC|_'I<F'S' -25.4 -21.9 0.5 5.8
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DSLMS -19.4 -19.4 1.0 0.9

4. Single-tone ANC with sudden increase in additive noise

In the condition that additive noise v(n) increases 6 dB, Fig.4 and Tab.3 show the
learn curves and RNP data of different algorithm. RNP of MECKF, MECKF-S-H
and DSLMS appear a similarly increase, since v(n) is an inherent noise of the
system. We observe an immediate RNP increase of MECKF and MECKF-S-H
with v(n). However, the learn curve of DSLMS contains a gradually rising

transition between 5000 and 7000 samples, due to the fact that DSLMS requires
previous e(n) to control updating direction.
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Tab.3 RNP of three algorithms after 6dB sudden increase in additive noise

Algorithms RNP (dB) Variance of RNP
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Before v(n) After v(n) Before v(n) After v(n)

increases increases increases increases
MECKF -24.8 -19.1 0.6 0.5
MECKF-S-H -25.4 -19.5 0.5 0.5
DSLMS -19.4 -13.8 1.0 0.6

5. Single-tone ANC with sudden change in secondary path

With a sudden change in S (n) to an FIR filter whose coefficients are given by [1,

0.7, 0.3352, -0.2, 0.02], its amplitude, phase and impulse responses are shown in
Fig. 5, Fig. 6 and Tab. 4 provide performances of different algorithms. As
observed, MECKF has a same RNP both after and before S (n) change, exhibits a

robustness property with respect to possible uncertainties in the secondary path
model. MECKF-S-H converges very slowly after change. RNP of DSLMS
changes little, but its variance reduces a lot, convergence rate also increases

greatly. This well confirms that though S(n) effect e, (n) little, it is the
main influence to ey s ().
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Tab.4 RNP of three algorithms after sudden change of secondary path

RNP (dB) Variance of RNP
Algorithms Before After Bse{r?)r € After
S(n) changes  S(n) changes changes S(n) changes
MECKF -24.8 -24.5 0.6 0.6
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6. Broadband ANC with stationary secondary path

Fig.7 and Tab.5 show results obtained with broadband original noise. It can be seen
that the MECKF and MECKF-S-H both have a wider noise reduction band, about
0.3x 7 rad/sample by trial. However, MECKF-S-H shows a significant overshoot
and a much slower convergence rate, this can be explained by the iteratively
obtained system noise properties. Since DSLMS has a narrow noise reduction band,
not only subband structure should be applied but also the order of the adaptive filter
should be increased.

To get insight in the robustness in broadband ANC system, the same
experiments have been repeated for unstable in P(n), v(n) and S(n) for

1767



MECKEF and MECKF-S-H algorithms. We observe the similar robustness as that of
single tone ANC using MECKEF, only except for a 3-time increase of convergence
time with a sudden change in P(n). But the MECKF-S-H algorithm yields no

such robustness in broadband ANC with unstable environment.
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Fig.7 Learn curves of three algorithms with 0~400 Hz
broadband original disturbance

Tab.5 RNP of three algorithms with 0~400 Hz broadband original disturbance

Algorithm RNP (dB) Variance of RNP
MECKF -25.3 0.4
MECKF-S-H -24.4 1.3
DSLMS -16.3 16.7
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7. Conclusions

In the simulation experiments compared with DSLMS algorithm, we employed
stationary condition for single-tone and broadband ANC, non-stationary conditions
with primary path, secondary path varying and additive noise increasing, the results
show:
1) The MECKF algorithm converges fast, and has a wide noise reduction band.
2) The MECKEF algorithm performs well in either stationary or non-stationary
condition with single-tone and broadband original noise.
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