
The Overview of Many Light Rendering

Genyuan Zhang1,a, Jun Huang2,b, Huabing Zhang1, c, Xiaohua Li3,d

1The Zhejiang University of Media and Communications, Hangzhou, P.R.
China
2Shanghai Advanced Research Institute Chinese Academy of Sciences,
China
3The information center, Zhejiang University, China
azgenyuan@163.com, bhuangj@sari.ac.cn, chuabingzhang@163.com, dxi
aohua@zju.edu.cn

Abstract

Rendering complex scenes with indirect illumination, high dynamic

range environment lighting, and many direct light sources remains

a challenging problem. Prior work has shown that all these effects

can be approximated by many point lights. For hundreds of

thousands of lights, a brute force solution that computes all

columns of the many-lights problem is prohibitively expensive.

Many methods have been proposed to reduce the computation

complexity of the many-lights problem. In this paper, We introduce

three different many light algorithms which exploit matrix structure

from different aspects. The advantage and disadvantage are

analyzed according to different aspects of three algorithms.

Keywords: many light rendering; lightslice; row-collumn sampling;

Introduction

 Fast computation of global illumination in complex scenes

with many glossy surfaces is a long-standing unsolved problem of

rendering research; indeed, no satisfactory solution exists. Pure

International Symposium on Computers & Informatics (ISCI 2015)

© 2015. The authors - Published by Atlantis Press 1914

Monte Carlo methods like path tracing, bidirectional path tracing or

Metropolis [4] take very long to converge. Photon mapping with

final gathering [11] is generally much faster than pure Monte Carlo,

but not so much in highly glossy scenes. Irradiance caching [13] or

radiosity approaches [15] are not applicable to non-diffuse

materials, and their directional extensions [14] can only handle

moderate gloss. Many-light methods [10] provide good

performance, but are incorrect for two reasons. First, the generated

virtual point lights (VPLs) are diffuse-only, so light bouncing off

glossy surfaces is ignored. Second, the VPL contributions are

clamped to prevent illumination spikes. These measures produce

visually pleasing results in diffuse scenes, but they remove much of

the interesting illumination in scenes with a substantial proportion

of glossy materials. Lightcuts [16] hierarchically clusters the lights

into a light tree using geometric proximity as the cluster metric. It

then renders the final image by choosing a set of representative

clusters differently for each pixel. Matrix Row-Column Sampling

(mrcs in short) [10] clusters entire matrix columns together and

renders one representative column for the entire clusters. This is

motivated by the observation that the transport matrix is close to

low rank. For large environments and complex lighting, neither

lightcuts nor mrcs optimally exploits the structure found in these

matrices. The former works well for local lighting and

mostly-visible global lights, but oversamples shadowed global

lights (corresponding to bright columns with large black segments

or entirely black). The latter works well for global lights, quickly

1915

determining the global visibility behavior, but is inefficient for

local lighting (corresponding to low intensity columns that are

mostly black) in that it samples them for all pixels.

 The main observation of our work is that, if we cluster similar

pixels together, the slice of the matrix corresponding to these pixels

has significantly lower rank than the original matrix. Intuitively this

is true since for each slice, local lighting and shadowed regions can

all be approximated together with a low intensity representative.

However each of these approaches are significantly different from

ours since they aim to approximate the whole matrix.

Overview of Many Light Rendering

lightslice

 LightSlice[2], an algorithm that efficiently solves the

many-lights problems by sampling matrix slices. LightSlice[2] first

determine matrix slices by clustering similar image pixels based on

their geometric proximity. For each of these slices a representative

and roughly cluster all columns based on all row values is rendered.

This initial clustering effectively captures the global structure of

the matrix[2]. For each slice, then such global clusters into per-slice

clusters based on representative rows of the given slice and its

neighboring slices are refined[2]. This effectively captures the local

structure of the matrix, including its shadowing behavior[2]. Each

slice is rendered by choosing representative columns and only

rendering the column elements corresponding to the slice rows[2].

LightSlice combines the advantages of both lightcuts and mrcs by

1916

effectively capturing the local structure of the matrix, including its

shadowing, while adapting to the local changes for each slice[2].

LightSlice is consistently faster than other algorithms, with

between three and six times speedup[2]. More importantly, each of

these prior algorithms works well for some scenes, but becomes

inefficient for others[2]. This is due to the fact that each of them is

optimal for some matrix structure but inefficient for others[2].

LightSlice is instead consistently efficient in all our scenes since it

can adapt to the typical matrix structures found in complex lighting

scenarios[2].

Rrow-column sampling

[3] presented an algorithm to compute fast and high-quality

solutions to the many-light problem, which is treated as the

problem of approximating the sum of all columns of an unknown

matrix. [3] explores the matrix structure by sampling a small set of

rows, and reconstruct the image by rendering a small set of

representative columns. [3] explicitly takes advantage of GPU

acceleration and requires no precomputation. Since complex and

arbitrary object appearance can be expressed in the context of the

many-light problem, [3] could have compelling applications in

cinematic and architectural lighting design. One of the drawbacks

of [3] is that shadow mapping artifacts may be present. In particular

shadow bias is an issue, since there might not exist a single bias

setting that works for all 100 thousand automatically generated

lights. Moreover, the conversion of indirect illumination to point

1917

lights requires clamping, common to all similar approaches [Keller

1997; Walter et al. 2005]. This leads to slight darkening of indirect

lighting, especially in corners[3]. [3] does not specifically address

this limitation of the many-light formulation, treating indirect lights

like any other programmable shader. Furthermore, while our

algorithm is mostly designed for previewing single frames, [3]

would like to explore rendering animations. Currently, slight

temporal artifacts might be seen due to the Monte Carlo nature of

the algorithm, and can be remedied by increasing the number of

samples.

Virtual Spherical Rendering

 [1]have introduced the virtual spherical light, which addresses

fundamental limitations in many-light rendering of glossy scenes:

the loss of energy due to clamping and the use of diffuse VPLs. [1]

have shown that rendering with VSLs produces high-quality

images in minutes, even in relatively difficult lighting scenarios

where current approaches are either incorrect, or converge very

slowly (taking hours). [1] takes an important step towards solving

the difficult problem of glossy inter-reflections, and will stimulate

new developments in the field of many-light rendering. goal is to

eliminate these limitations of many-light methods, thereby

developing the first algorithm to render scenes with high amounts

of glossy reflectance significantly faster than pure Monte Carlo

techniques[1]. Our key contribution is a new light type, the virtual

spherical light, with the following desirable properties: The

1918

point-wise evaluations of traditional VPLs are replaced by

integration over a non-zero solid angle, eliminating the spikes

caused by narrow glossy BRDF lobes and the geometry term[1].

Clamping is no longer needed, preserving illumination energy that

would otherwise be lost. Since the VSL acts as a point light in

visibility computations, fast GPU shadow mapping can be

exploited. The VSL contribution depends only on values local to

the surface point and light location, so its estimation becomes a

purely numerical kernel ideally suited to evaluation in a GPU

shader[1].

Conclusion

 In this paper, We introduce three different many light

algorithms which exploit matrix structure from different aspects.

The advantage and disadvantage are analyzed according to

different aspects of three algorithms. This work is partially

supported by Zhejiang Provincial projects (2014C31075), the

National Nature Science Foundation of China (61201446) ,and the

National Key Technology R&D Program projects

(2012BAH43F03,2013BAH27F01, 2013BAH27F02).

References

[1] Miloˇs Haˇsan, Jaroslav Kˇriv´anek, Bruce Walter, Kavita Bala.

Virtual Spherical Lights for Many-Light Rendering of Glossy

Scenes.Siggraph Asia 2009.

1919

[2] Kevin Egan, Fredo Durand, Ravi Ramamoorthi, Matthias

Zwicker. LightSlice: Matrix Slice Sampling for the

Many-Lights Problem. Siggraph Asia 2011.

[3] Miloˇs Haˇsan, Fabio Pellacini, Kavita Bala. Matrix

Row-Column Sampling for the Many-Light Problem.

Siggraph 2007.

[4] VEACH, E. 1997. Robust Monte Carlo Methods for Light

Transport Simulation. PhD thesis, Stanford University.

[5] PHARR, M., AND HUMPHREYS, G. 2010. Physically Based

Rendering, Second Edition: From Theory To Implementation,

2nd ed. Morgan Kaufmann Publishers Inc.

[6] KELLER, A. 1997. Instant radiosity. In Proceedings of

SIGGRAPH 97, Computer Graphics Proceedings, Annual

Conference Series, 49–56.

[7] WALTER, B., FERNANDEZ, S., ARBREE, A., BALA,

K.,DONIKIAN, M., AND GREENBERG, D. P. 2005.

Lightcuts: a scalable approach to illumination. ACM

Transactions on Graphics 24, 3 (Aug.), 1098–1107.

[8] RITSCHEL, T., ENGELHARDT, T., GROSCH, T., SEIDEL,

H.-P.,KAUTZ, J., AND DACHSBACHER, C. 2009.

Micro-rendering forscalable, parallel final gathering. ACM

Transactions on Graphics 28, 5 (Dec.), 132:1–132:8.

[9] CHRISTENSEN, P. H. 2008. Point-based approximate color

bleeding. Tech. Rep. 08-01, Pixar Animation Studios.

1920

http://www.cs.columbia.edu/%7Ektegan/
http://people.csail.mit.edu/fredo/
http://www.cs.berkeley.edu/%7Eravir/

[10] HAˇSAN, M., PELLACINI, F., AND BALA, K. 2007. Matrix

rowcolumn sampling for the many-light problem. ACM

Transactions on Graphics 26, 3 (July), 26:1–26:10.

[11] JENSEN, H. W. 2001. Realistic image synthesis using photon

mapping. A. K. Peters, Ltd., Natick, MA, USA.

[12] KELLER, A. 1997. Instant radiosity. In Proceedings of

SIGGRAPH 97, Computer Graphics Proceedings, Annual

Conference Series,49–56.

[13] WARD, G. J., RUBINSTEIN, F. M., AND CLEAR, R. D.

1988. A ray tracing solution for diffuse interreflection. In

Proceedings of ACM SIGGRAPH 88, 85–92.

[14] KˇRIV ´ANEK, J., GAUTRON, P., PATTANAIK, S., AND

BOUATOUCH, K. 2005. Radiance caching for efficient

global illumination. In IEEE Transactions on Visualization

and Computer Graphics, 550–561.

[15] COHEN, M. F., AND WALLACE, J. R. 1993. Radiosity and

Realistic Image Synthesis. Morgan Kaufmann, San Francisco,

CA.

[16] WALTER, B., FERNANDEZ, S., ARBREE, A., BALA,

K.,DONIKIAN, M., AND GREENBERG, D. P. 2005.

Lightcuts: a scalable approach to illumination. ACM

Transactions on Graphics 24, 3 (Aug.), 1098–1107.

1921

	Genyuan ZhangP1,aP, Jun HuangP2,bP, Huabing ZhangP1, cP, Xiaohua LiP3,d
	P1PThe Zhejiang University of Media and Communications, Hangzhou, P.R. China
	P2PShanghai Advanced Research Institute Chinese Academy of Sciences, China
	P3PThe information center, Zhejiang University, China
	PaPzgenyuan@163.com, PbPhuangj@sari.ac.cn, PcPhuabingzhang@163.com, PdPxiaohua@zju.edu.cn
	Keywords: many light rendering; lightslice; row-collumn sampling;

