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Abstract 

Rendering complex scenes with indirect illumination, high dynamic 

range environment lighting, and many direct light sources remains 

a challenging problem. Prior work has shown that all these effects 

can be approximated by many point lights. For hundreds of 

thousands of lights, a brute force solution that computes all 

columns of the many-lights problem is prohibitively expensive. 

Many methods have been proposed to reduce the computation 

complexity of the many-lights problem. In this paper, We introduce 

three different many light algorithms which exploit matrix structure 

from different aspects. The advantage and disadvantage are 

analyzed according to different aspects of three algorithms.  
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Introduction 

    Fast computation of global illumination in complex scenes 

with many glossy surfaces is a long-standing unsolved problem of 

rendering research; indeed, no satisfactory solution exists. Pure 
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Monte Carlo methods like path tracing, bidirectional path tracing or 

Metropolis [4] take very long to converge. Photon mapping with 

final gathering [11] is generally much faster than pure Monte Carlo, 

but not so much in highly glossy scenes. Irradiance caching [13] or 

radiosity approaches [15] are not applicable to non-diffuse 

materials, and their directional extensions [14] can only handle 

moderate gloss. Many-light methods [10] provide good 

performance, but are incorrect for two reasons. First, the generated 

virtual point lights (VPLs) are diffuse-only, so light bouncing off 

glossy surfaces is ignored. Second, the VPL contributions are 

clamped to prevent illumination spikes. These measures produce 

visually pleasing results in diffuse scenes, but they remove much of 

the interesting illumination in scenes with a substantial proportion 

of glossy materials. Lightcuts [16] hierarchically clusters the lights 

into a light tree using geometric proximity as the cluster metric. It 

then renders the final image by choosing a set of representative 

clusters differently for each pixel. Matrix Row-Column Sampling 

(mrcs in short) [10] clusters entire matrix columns together and 

renders one representative column for the entire clusters. This is 

motivated by the observation that the transport matrix is close to 

low rank. For large environments and complex lighting, neither 

lightcuts nor mrcs optimally exploits the structure found in these 

matrices. The former works well for local lighting and 

mostly-visible global lights, but  oversamples shadowed global 

lights (corresponding to bright columns with large black segments 

or entirely black). The latter works well for global lights, quickly 

1915



determining the global visibility behavior, but is inefficient for 

local lighting (corresponding to low intensity columns that are 

mostly black) in that it samples them for all pixels. 

    The main observation of our work is that, if we cluster similar 

pixels together, the slice of the matrix corresponding to these pixels 

has significantly lower rank than the original matrix. Intuitively this 

is true since for each slice, local lighting and shadowed regions can 

all be approximated together with a low intensity representative. 

However each of these approaches are significantly different from 

ours since they aim to approximate the whole matrix.  

Overview of Many Light Rendering 

lightslice 

   LightSlice[2], an algorithm that efficiently solves the 

many-lights problems by sampling matrix slices. LightSlice[2] first 

determine matrix slices by clustering similar image pixels based on 

their geometric proximity. For each of these slices a representative 

and roughly cluster all columns based on all row values is rendered. 

This initial clustering effectively captures the global structure of 

the matrix[2]. For each slice, then such global clusters into per-slice 

clusters based on representative rows of the given slice and its 

neighboring slices are refined[2]. This effectively captures the local 

structure of the matrix, including its shadowing behavior[2].  Each 

slice is rendered by choosing representative columns and only 

rendering the column elements corresponding to the slice rows[2]. 

LightSlice combines the advantages of both lightcuts and mrcs by 
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effectively capturing the local structure of the matrix, including its 

shadowing, while adapting to the local changes for each slice[2]. 

LightSlice is consistently faster than other algorithms, with 

between three and six times speedup[2]. More importantly, each of 

these prior algorithms works well for some scenes, but becomes 

inefficient for others[2]. This is due to the fact that each of them is 

optimal for some matrix structure but inefficient for others[2]. 

LightSlice is instead consistently efficient in all our scenes since it 

can adapt to the typical matrix structures found in complex lighting 

scenarios[2].  

Rrow-column sampling 

[3] presented an algorithm to compute fast and high-quality 

solutions to the many-light problem, which is treated as the 

problem of approximating the sum of all columns of an unknown 

matrix. [3] explores the matrix structure by sampling a small set of 

rows, and reconstruct the image by rendering a small set of 

representative columns. [3] explicitly takes advantage of GPU 

acceleration and requires no precomputation. Since complex and 

arbitrary object appearance can be expressed in the context of the 

many-light problem, [3] could have compelling applications in 

cinematic and architectural lighting design. One of the drawbacks 

of [3] is that shadow mapping artifacts may be present. In particular 

shadow bias is an issue, since there might not exist a single bias 

setting that works for all 100 thousand automatically generated 

lights. Moreover, the conversion of indirect illumination to point 
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lights requires clamping, common to all similar approaches [Keller 

1997; Walter et al. 2005]. This leads to slight darkening of indirect 

lighting, especially in corners[3]. [3] does not specifically address 

this limitation of the many-light formulation, treating indirect lights 

like any other programmable shader. Furthermore, while our 

algorithm is mostly designed for previewing single frames, [3] 

would like to explore rendering animations. Currently, slight 

temporal artifacts might be seen due to the Monte Carlo nature of 

the algorithm, and can be remedied by increasing the number of 

samples.  

Virtual Spherical Rendering 

   [1]have introduced the virtual spherical light, which addresses 

fundamental limitations in many-light rendering of glossy scenes: 

the loss of energy due to clamping and the use of diffuse VPLs. [1] 

have shown that rendering with VSLs produces high-quality 

images in minutes, even in relatively difficult lighting scenarios 

where current approaches are either incorrect, or converge very 

slowly (taking hours). [1] takes an important step towards solving 

the difficult problem of glossy inter-reflections, and will stimulate 

new developments in the field of many-light rendering. goal is to 

eliminate these limitations of many-light methods, thereby 

developing the first algorithm to render scenes with high amounts 

of glossy reflectance significantly faster than pure Monte Carlo 

techniques[1]. Our key contribution is a new light type, the virtual 

spherical light, with the following desirable properties: The 
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point-wise evaluations of traditional VPLs are replaced by 

integration over a non-zero solid angle, eliminating the spikes 

caused by narrow glossy BRDF lobes and the geometry term[1]. 

Clamping is no longer needed, preserving illumination energy that 

would otherwise be lost. Since the VSL acts as a point light in 

visibility computations, fast GPU shadow mapping can be 

exploited. The VSL contribution depends only on values local to 

the surface point and light location, so its estimation becomes a 

purely numerical kernel ideally suited to evaluation in a GPU 

shader[1].  

Conclusion 

   In this paper, We introduce three different many light 

algorithms which exploit matrix structure from different aspects. 

The advantage and disadvantage are analyzed according to 

different aspects of three algorithms. This work is partially 

supported by Zhejiang Provincial projects (2014C31075),  the 

National Nature Science Foundation of China (61201446) ,and the 

National Key Technology R&D Program projects 

( 2012BAH43F03,2013BAH27F01, 2013BAH27F02). 
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