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Abstract 

As ideal candidates for the implementation of a complex network on a chip, 
light-emitting diodes (LEDs) with optoelectronic feedback loop can display 
complex sequences of periodic mixed mode oscillations and chaotic spiking. This 
paper presents a neural network based feedback control scheme for 
synchronization of coupled LEDs networks. Based on Lyapunov stability theory, 
the controller can stabilize the synchronization error dynamics around the origin 
point, thus robust synchronization can be obtained. The effectiveness of the 
proposed control scheme is illustrated ba a numerical example. 
Keywords: chaos synchronization; light-emitting diode; complex dynamics; 
neural network control. 

Introduction 

Synchronization is ubiquitous for a population of dynamically interacting units 
and plays a very important role in various fields [1]. Various kinds of 
synchronization phenomena have been observed and studied, such as complete 
synchronization [2], phase synchronization [3], lag synchronization [4] and 
projective synchronization [5]. Recently, synchronization in complex networks 
has attracted an increasing attention [6]. In the real world, synchronization of 
complex networks can not only explain many natural phenomena, but also have 
many applications [6]. Therefore, various synchronization methods for complex 
networks have been presented, such as adaptive pinning control [7], and observer 
based control [8] and adaptive-impulsive control [9].  

Recently, a GaAs light-emitting diode (LED) with ac-coupled nonlinear 
optoelectronic feedback has been shown to exhibit complex dynamics including 
mixed mode oscillations and chaos [10]. The effects of noise on the chaotic 
attractor in coupled LED systems have also been studied [11]. The goal of this 
paper is to achieve robust synchronization between two LED networks. In each 
network, LEDs are coupled bi-directionally through the bias current with 
sufficiently weak coupling. We propose a controller based on radius basis 

International Symposium on Computers & Informatics (ISCI 2015)

© 2015. The authors - Published by Atlantis Press 1922



 

function (RBF) neural networks which deal with the unknown terms or 
uncertainty of the nonlinear systems due to their approximation ability [12]. Based 
on Lyapunov stability theory, stability of closed-loop error system is proven. Then 
the synchronization is guaranteed. Simulation results demonstrate the validity of 
the method.  

LED System Model and Its Complex Dynamics 

For numerical and analytical purposes, the LED system dynamics is written in 
dimensionless form (see [8] for details): 

                        (1) 

where 
0δ , γ , ε , α  and s  are system parameters. 

The (a, c) panels in Fig. 1 show some typical patterns with different values of 

0δ  obtained by numerical integration of Eq. (1). The (b, d) panels are the 
corresponding phase portraits in x y ω− −  . We observe chaotic spiking with 

0 1.15δ =  and periodic oscillation with 0 1.1δ = . 
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Fig. 1. Responses of the LED system with different values of parameter 

0δ : (a, c) Time series of the variable 1x ; (b, d) the corresponding 

phase portraits in 1 2 3x x x− − . 

Synchronization of Coupled LED Networks via Neural 
Networks Control 

The drive network consists of N LEDs is given by:  
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where ( ) ×= ∈ N N
ijG g R  is the outer-coupling matrix ijg  is the coupling 

strength.  
The corresponding controlled LEDs network is given by: 
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where 1 2 3( ) ( , , )= T
i i i iu t u u u  is the control input to the i th node.  

Subtract (2) from (3), one gets the error dynamics as 

1 1 1 1

2 2 2 2

3 3 1 3 3
1

( , ) ,   
( , ) ,   

( ) ,         1, 2, ,

γ

ε
=

= − + ∆ +
= − + ∆ +

= − + + + =∑





 2

i i i i i i

i i i i i i
N

i i i ij j i
j

e e f u
e e f u

e e e g e u i N

x y
x y   

where

2 3 1 3 1 1 2 3 1 3 1 1 2( , ) ( ) (1 ( )) ) ( ) (1 ( )) )γ α γ α∆ = + + + − − + + + −i i i i i i i i i i i i i if y y s y y y y x x s x x x xx y
 and 1 1 2 1 2( , )∆ = −i i i i i if y y x xx y , The synchronization problem is how to 

design the controller ( )iu t , which will stabilize (4) around zero. 

Let 3
11 1 12 2 13 3( ) [ , , , , , , , , ]= ∈2 2 2 T N

N N Nt e e e e e e Re ,
3
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and 11 1 12 2 13 3( ) [ , , , , , , , , ]T
N N Nt u u u u u u=u 2 2 2 . Then (4) becomes 
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In this paper, we use RBFNNs to approximate the nonlinear function ∆F  in 
the following form: 

*( , ) ε∆ = Φ Θ +F x y                                                                                                          
   

where ε  is the approximation error vector and Nε≤ε  with Nε  a positive 

constant, and * * * * * 3
11 1 12 2( , , , , , ,0, 0)T N

N N Rθ θ θ θΘ = ∈2 2 2 , 

11 1 12 2{ , , , , , ,0, ,0}T T T T
N Ndiag φ φ φ φΦ = 2 2 2  with * 1m

i Rθ ×∈  are the ideal 
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weights matrix which can’t be obtained but can be on-line estimated by Θ̂  with 

the estimation error . 1m
i Rφ ×∈  are basis functions which are 

chosen as commonly used Gaussian function with fixed centers and widths. 
Thus real controller is designed as 

ˆ( ) ( , )t = − −Φ Θu Be x y                                                                                                           
        

where the adaptive law of Θ̂  is designed as 

ˆ TΘ = ΓΦ e
                                                                                                           

                             

Then the error dynamics becomes 

( ) ( , ) ( , )= − −Φ Θ+ = −Φ Θ+e A B e x y ε Qe x y ε              

Theorem 1. Consider the synchronization error dynamics (5) with the control law 
(7) and adaption law (8), by properly selecting the feedback gain matrix B , one 
can make the error dynamical system (5) globally asymptotically stable at the 
origin, thus implying that the systems (2) and (3) are globally asymptotically 
synchronized. 
Proof. Consider the following Lyapunov function candicate 

1 1
2 2

T TV
β

= + Θ Θe e                                                                                                              

             

Differentiating (9) with respect to time and noting (6) and (7), one can obtain 

21
min

ˆT T T T
NV β λ ε−= +Θ Θ = − ≤ − ⋅ +e e e Qe e ε e e                                                            

          

which is negective as long as minNε λ>e , i.e. the error dynamics is stable 

around origin point, and the synchronization error has an upper bound minNε λ , 
which can be as small as possible by proper choice of the control parameters. Here 

minλ  is the minimum eigenvalue of Q . 

Simulation Results 

To illustrate the effectiveness of the proposed control method for the 
synchronization of the LED networks, numerical simulations are carried out in 
this section. 
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The system parameters are set as 5=N , 0.0033γ = , 0.00004ε = , 

1.002α = . The values of 0δ for the drive and response networks are different 
such that the networks display diffent dynamics before control. We consider two 
cases. In Case 1, the values of 0δ  are randomly distributed in [1.14,  1.16]  for 
the drive network, while those for the response network are randomly distributed 
in [1.09,  1.11] . In Case 2, the values of 0δ   switch. The coupling strengths are 

5
, 5 10−= ×i jg , , 1, 5= 2i j . The controller is switched on at time 1t = . The 

simulation results are shown in Fig. 2. In Case 1, the chaotic LED networks are 
controlled to follow the periodic ones as shown in Fig. 2 (a) and (b). In Case 2, the 
periodic LED networks are controlled to follow chaotic ones as shown in Figure 2 
(c) and (d). Before the control is implemented, the master and slave LED systems 
exhibit their own original complex dynamical behaviors. After the controller is 
applied, the synchronization error converges to a very small neighborhood of the 
origin point and chaos synchronization is obtained. 
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Fig. 2: Responses of waveforms of 21 21,x y  (a, c) and the corresponding sum 

of absolute errors 5
2

1 1
1

1 ( )
5 i i

i
y x

=

−∑  (b, d) for two cases: (a, b) Case 1 and (c, d) Case 

2, whereas the control signal is switched on at time 1t = . 

Conclusions 

Adaptive synchronization of LED networks with complex dynamics has been 
investigated in this paper. A neural networks based control scheme has been 
proposed. Based on the Lyapunov stability theory, the stability analysis has been 
given. The proposed controller ensures stable synchronization between the drive 
LED network and the response one, regardless of the system dynamics. The 
effectiveness of the proposed control method has been demonstrated by 
simulation results. 
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