
 

Effect of Coupling Types on Synchronization of 
Weakly Coupled Bursting Neurons 

Meili Lu1, Bei Liu2, Yanqiu Che2, a, Chunxiao Han2 
1School of Information Technology and Engineering, 2Tianjin Key 
Laboratory of Information Sensing & Intelligent Control, Tianjin 
University of Technology and Education, Tianjin, 300222, China 
ayqche@tju.edu.cn 

Abstract 

Weak coupling connections are ubiquitous in neuronal system. For neurons with 
both spiking and bursting dynamics, bursting synchronization, which has been 
found to be related with a number of abnormal brain rhythms, is easier to occur at 
smaller synaptic strengths. In this paper, we examine the effect of the synaptic 
types on the synchronization properties of the weakly coupled bursting neuronal 
oscillators by means of phase-model reduction. The bifurcation analysis clarifies 
how the synaptic types affect the existence and stability of in-phase, anti-phase 
and out of phase synchronization states. The results show that electrical coupling 
and inhibitory coupling neurons have stable anti-phase synchronous solutions, 
while excitatory coupling neurons exhibit out of phase synchronous behaviors. 
Keywords: Bursting Neurons; Synchronization; Weak Coupling; Phase Response 
Curve. 

Introduction 

Synchronization in neuronal system is a significant problem in computational 
neuroscience, which has received a great deal of attention in the past decades [1]. 
Experimental evidence demonstrates that synchronized neuronal activity has been 
suggested as particularly relevant in neural encoding and information process [2]. 
Some neurons in the brain display bursting behavior. As a unit of neural 
information, it contains two time scales with fast spiking and relative slow 
periodic oscillations. Bursting can increase the reliability of communication 
between neurons [3, 4]. Bursting synchronization can be influenced by many 
factors, such as coupling strength and synaptic coupling types [5-11]. Two types 
of synaptic connection, electrical (or gap junction) and chemical coupling, are 
quite different. Several studies have revealed the effects of different couplings on 
the sychronization of spiking neurons [6-11], however, the case for bursting 
neurons has not been fully understood. Phase model method, which captures how 
timing of one neuron affects the other one on a long time scale, provides a 
powerful tool to study network behaviors of weakly coupled neurons, especially 
for synchronization [9-12].  
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In this paper, we investigate the effect of synaptic types on synchronous 
behaviors of weakly coupled bursting neurons via phase model reduction method. 
We firstly briefly describe the phase-model reduction method. Then we introduce 
the bursting neuronal model developed from the Morris-Lacor model [13] as well 
as their couplings. Futher, the membrane potential time-response and 
corresponding phase response curves (PRC) are explored. Then, we analyze the 
electrical and chemical coupling connections and the role of the type of coupling. 
Finally, a summary is also given.  

Phase-Model Reduction Method 

Consider a oscillation system ( )x f x=  with a stable limit cycle 0 ( )tΓ  

disturbed by an external input ( )p t  with 1� , the dynamics 
( ) ( , )x f x p x t= +   can be reduced to the following phase system by 

introducing phase variable ( )t tθ ϕ= +  with t  capturing fast free-running 
oscillation ( )x f x= , and ϕ  capturing slow network-induced phase deviation 
from the natural oscillation. 

( ( ) ( , )) 1 ( , )x f x p x t p x t
x x x
θ θ θθ ε ε∂ ∂ ∂

= ⋅ = ⋅ + = + ⋅
∂ ∂ ∂

                                                                              

(1) 

The Phase Response Curve (PRC) is defined as 
0 ( )

( ) ( / )Q x
θ

θ θ
Γ

= ∂ ∂ , then we 

have ( ) ( ( ), )Q t p x t tϕ ε ϕ ϕ= + + . 
For two identified coupled neurons considered in our case, the phase system 

can be expressed as: 

( ) ( ( ), ( )), , 1, 2i i i ij i i j jQ t p x t x t i jϕ ε ϕ ϕ ϕ= + ⋅ + + =                                                                               
(2) 

Since the phase deviations iϕ  are much slower than the oscillations (variable 
t ),  system (2) can be transformed into the following form by means of the 
method of averaging, ( )i ij j iHϕ ε ϕ ϕ= − ,  where , 1, 2i j = and 

0 00
( ) (1/ ) ( ) ( ( ), ( ))

T

ij j i ij j iH T Q t p t t dtϕ ϕ ϕ ϕ− = ⋅ Γ Γ + −∫  is the effective 

coupling function. 
Let 2 1η ϕ ϕ= −  denote the phase difference between the oscillators, then the 

above system becomes ( )Gη ε η= , where 21 12( ) ( ) ( )G H Hη η η= − −  is the 

anti-symmetric part of the coupling. All equilibriums are solutions to ( ) 0G η = , 
and they are intersections of the horizontal zero line with the graph of ( )G η . 
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They are stable if the slope of the graph is negative at the intersection. Since the 
For identical oscillators, ( )H η  is an odd function (i.e., ( ) ( )H Hη η− = −  ), 

0η =  and / 2Tη =  are always equilibriums, corresponding to the in-phase 
and anti-phase synchronized solutions. 

Bursting Neuronal Model 

By introducing a slow potassium channel to the traditional Morris-Lecar 
neuronal model, one obtains a bursting neuronal model consisting of three 
differential equations [11] 

M ext ion , ( ) / ,   ( ( ) ) / ( ).N SC V I I S V VN N S SN δφ t t∞∞= − = − = − 

                                                    (3) 

where 

ion Ca Ca K K L L KS K( ) ( ) (( ) )I g M V g S VV g N V V g V VV∞= − + − − −+ − , 

V represents membrane potential, [0,1]N ∈  represents the potassium 

activation variable, S  is the gate variable controlled by slow potassium ions. MC  

is the membrane capacitance, extI  is the externally-applied DC current. The 

parameters CaV , KV  and LV  represent the equilibrium potentials of calcium, 

potassium and leak current, respectively. Cag , Kg , KSg and Lg  are the 

maximal conductance of the corresponding ionic currents. M∞ , N∞  and S∞  are 

nonlinear functions of V , given by 1 20.5[1 tanh(( ) / )]M V V V∞ = + − , 

3 40.5[1 tanh(( ) / )]N V V V∞ = + −  and ( )( )5 60.5 1 tanh ( ) /S V V V∞ = + − , 

respectively, where 1V , 3V  and 5V  are the activation midpoint potential at which 

the corresponding currents are half activated, 2V , 4V  and 6V  denote the slope 

factor of the activation. The time constants Nt and St about the potassium 

activation are described by 3 41/ cosh(( ) / 2 )N V V Vt = −  and 

( )5 61/ cosh ( ) (2 )S V V Vt = − . 
Throughout this paper, all the parameters involved in ML model are fixed as 

values 2
M 20 F/cmC m= , 2

Ca 4mS / cmg = , 2
K 8mS / cmg = , 

2
L 2mS / cmg = , 2

KS 0.5mS / cmg = , Ca 120mVV = , K 80mVV = − , 

L 60mVV = − , 1 1.2mVV = − , 2 18mVV = , 3 12mVV = , 4 17.4mVV = , 
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5 10mVV = − , 6 4mVV = , -10.22msφ = , -10.001msδ = ,  and 
2

ext 42pA / cmI = . 
The dynamics of the two electrically coupled system is described as: 

ext ion c
m

( ( )1 ( ) ,   
( ) ( )
) ,   i i

i
N S

i i i i
j i i

i i
i

N V VV g N S S V SI I V V
C V V

φ δ
t t

∞∞ − = − − − = = 
−  

                                            (4) 

where cg  is coupling strength, 

Ca Ca K K Li KS Kon L( ) ( ) ( ) ( )i i i i
i

i i
iI g M V V g N V V g V V g S V V∞= − + − + − + −

. 
The coupling function is ( , ) ( ( ) / ,0)ij i j j i Mp x x V V C= − − . Then the 

reduced phase model is ( ) ( ( ) ( ))c cg G g H Hη η η η= = − −   with 

1 0 00
( ) 1/ ( ) ( ( ) ( ( ) ( )))

T

mH C T Q t V t V t dtη η= − ⋅ + −∫ , where 0 ( )V t  is the 

membrane potential on the limit cycle, and 1( )Q t  is the corresponding PRC. 
The dynamics of the two chemically coupled ML systems is described as: 

ext ion sy
m

n syn
( ) ,  ( ( )(1 ))1 ( ) ,  ,  

( ) ( )
i i post i i

i j i i i i i i
i

i i
i

N S i

S V SI I s N V VV g N S s s V s sV V
C V V

φ α β
t t

δ ∞∞
∞

− =
−

−− − − = = =  −  

      (5) 

where syn( ) 1/ (1 exp( ( ) / ))pres V V V s∞ = + − − , syng  is the conduction of the 

synaptic channel, syn
postV  and syn

preV  are the post-synaptic and pre-synaptic 

threshold potential, respectively, s  is the rate of connecting receptors, α  and β  

are time constants. The excitatory coupling parameters are syn 0mVpostV = , 

syn 2mVpreV = , 2.2α = , 0.19β = , 4.5s = . Inhibitory coupling parameters 

are syn -70mVpostV = , 10α = , 0.18β = . The coupling strength used is 
2

syn 0.05mS / cmg = .  
The coupling function can be described as 

syn( , ) ( ( ) / ,0,0)post
ij i j j i Mp x x s V V C= − − . Then the reduced phase model 

is syn syn( ) ( ( ) ( ))g G g H Hη η η η= = − −  with 

1 0 0 syn0
( ) 1/ ( ) ( ( ) ( ) ( ( ) ))

T post
mH C T Q t s t V t V dtη η= − + ⋅ −∫  where 0 ( )V t  is the 

membrane potential on the limit cycle of the free-running oscillation as shown in 
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Fig. 1 (a). 0 ( )s t  is the value of s  corresponding to 0 ( )V t , and 1( )Q t  is the 
corresponding PRC as shown in Fig. 1 (b).  
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Figure 1: (a) The membrane potential on the limit cycle of the free-running 
oscillation; (b) The corresponding PRC 

Results and Analysis 

Average coupling function and phase-difference coupling function in the 
electrically coupled system are respectively shown in Figure 2 (a) and (b). And the 
response of the coupling system in different initial phase conditions is shown in 
Figure 2 (c), which is consistent to the theoretical results. The system can show 
many stable synchronous states including in-phase and anti-phase 
synchronization. Among these attractors, the anti-phase synchronization has the 
largest attractive domain and the strongest robustness to parameters and input 
perturbations.  

The responses of excitatory and inhibitory synaptic coupled systems are 
respectively shown in Figure 3 and Figure 4. Coupled bursting neurons with 
excitatory synapses behave as bi-stable out of phase synchronization, while the 
in-phase and anti-phase synchronous solutions are both unstable. The system in 
inhibitory synapses has multiple steady-state and the anti-phase synchronous 
solution is stable in a wide range, similar to the case with electrical coupling. 
Compared with electrical coupling, amplitudes of average coupling function and 
phase-difference coupling function in chemical coupling are much larger, so the 
synchronous solution converges much faster. 

Conclusions 

In this paper, the synchronization of weakly coupled bursting neuronal oscillators 
in different types of coupling is analyzed. The dynamics of the phase difference 
between the oscillators are well described in the scheme of phase-model reduction. 
The roles of different synapses are examined extensively. The fixed points 
corresponding to the various phase-locked states are identified. The shape of the 
effective coupling function determines the existence and the stability of those 
fixed points. The analysis clarifies how the type of coupling affects the existence 
and stability of in-phase, anti-phase and out of phase synchronization states. 
Electrical coupling and inhibitory coupling neurons have stable anti-phase 
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synchronous solutions but excitatory coupling neurons have out of phase 
synchronous solutions. 
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Figure 2: The phase response of excitatory coupled bursting neurons. 
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Figure 3: The phase response of excitatory coupled bursting neurons. 
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Figure 4: The phase response of inhibitory coupled bursting neurons. 
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